Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Bücher von Jean B. Lasserre

Filter
Filter
Ordnen nachSortieren Beliebt
  • von Onesimo Hernandez-Lerma
    139,00 - 140,00 €

    This book presents the first part of a planned two-volume series devoted to a systematic exposition of some recent developments in the theory of discrete-time Markov control processes (MCPs). Interest is mainly confined to MCPs with Borel state and control (or action) spaces, and possibly unbounded costs and noncompact control constraint sets. MCPs are a class of stochastic control problems, also known as Markov decision processes, controlled Markov processes, or stochastic dynamic pro- grams; sometimes, particularly when the state space is a countable set, they are also called Markov decision (or controlled Markov) chains. Regardless of the name used, MCPs appear in many fields, for example, engineering, economics, operations research, statistics, renewable and nonrenewable re- source management, (control of) epidemics, etc. However, most of the lit- erature (say, at least 90%) is concentrated on MCPs for which (a) the state space is a countable set, and/or (b) the costs-per-stage are bounded, and/or (c) the control constraint sets are compact. But curiously enough, the most widely used control model in engineering and economics--namely the LQ (Linear system/Quadratic cost) model-satisfies none of these conditions. Moreover, when dealing with "e;partially observable"e; systems) a standard approach is to transform them into equivalent "e;completely observable"e; sys- tems in a larger state space (in fact, a space of probability measures), which is uncountable even if the original state process is finite-valued.

  • von Onesimo Hernandez-Lerma & Jean B. Lasserre
    49,00 €

    = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~.

  • von Onesimo Hernandez-Lerma & Jean B. Lasserre
    79,00 €

    = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~.

  • von Jean B. Lasserre & Onesimo Hernandez-Lerma
    130,00 - 132,00 €

    Devoted to a systematic exposition of some recent developments in the theory of discrete-time Markov control processes, the text is mainly confined to MCPs with Borel state and control spaces.

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.