Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Bücher von Mohammad Zeeshan

Filter
Filter
Ordnen nachSortieren Beliebt
  • von Mohammad Zeeshan
    50,00 €

    Dans le secteur des soins de santé, l'analyse des big data est extrêmement importante, évidemment parce que le secteur lui-même abrite une vaste mer de données. L'analytique est utilisée pour examiner ces ensembles de données et découvrir des informations et des tendances cachées afin d'extraire des connaissances et d'anticiper des résultats. Les approches actuelles manquent de précision en matière de catégorisation et de prédiction, car la collecte de données cliniques et de soins de santé structurés prend beaucoup de temps et la prédiction précise des maladies à l'aide de rapports en temps réel est une tâche difficile et exigeante en termes de calcul. Par conséquent, il est essentiel de comprendre les motifs qui sous-tendent les approches d'apprentissage automatique dans le domaine de la santé, car la précision et l'exactitude sont souvent cruciales dans les problèmes de santé. L'objectif est de construire un modèle prédictif d'apprentissage automatique clinique généralisé en utilisant des algorithmes de classification supervisée, afin de prédire diverses maladies courantes mais graves par le biais d'une sortie binaire.

  • von Mohammad Zeeshan
    50,00 €

    Na indústria da saúde, a grande análise de dados é extremamente importante, evidentemente porque a própria indústria alberga um vasto mar de conjuntos de dados. A análise é utilizada para examinar estes conjuntos de dados e descobrir informações e tendências ocultas, a fim de extrair conhecimentos e antecipar resultados. As actuais abordagens existentes carecem de uma categorização considerável e precisão de previsão, uma vez que a obtenção de dados clínicos e de cuidados de saúde estruturados é morosa e a previsão precisa de doenças utilizando relatórios em tempo real é uma tarefa difícil e computacionalmente intensiva. Por conseguinte, a compreensão dos motivos por detrás das abordagens de aprendizagem automática nos cuidados de saúde é essencial, uma vez que a precisão e exactidão são frequentemente críticas nos problemas dos cuidados de saúde. O objectivo é construir um modelo generalizado de previsão da aprendizagem mecânica clínica utilizando algoritmos de classificação supervisionados, a fim de prever várias doenças de saúde comuns mas graves através de um resultado binário.

  • von Mohammad Zeeshan
    50,00 €

    Nel settore sanitario, l'analisi dei big data è estremamente importante, evidentemente perché il settore stesso ospita un vasto mare di dati. L'analitica viene utilizzata per esaminare questi set di dati e scoprire informazioni e tendenze nascoste, al fine di estrarre conoscenze e anticipare i risultati. Gli approcci attuali mancano di una considerevole accuratezza di categorizzazione e previsione, poiché il reperimento di dati clinici e sanitari strutturati richiede molto tempo e la previsione accurata delle malattie utilizzando rapporti in tempo reale è un compito difficile e ad alta intensità computazionale. Pertanto, la comprensione delle motivazioni alla base degli approcci di apprendimento automatico in ambito sanitario è essenziale, poiché la precisione e l'accuratezza sono spesso fondamentali nei problemi sanitari. L'obiettivo è costruire un modello clinico generalizzato di apprendimento automatico che utilizzi algoritmi di classificazione supervisionati, al fine di prevedere varie malattie comuni ma gravi attraverso un output binario.

  • von Mohammad Zeeshan
    50,00 €

    En el sector sanitario, la analítica de macrodatos es extremadamente importante, evidentemente porque el propio sector alberga un vasto mar de conjuntos de datos. La analítica se utiliza para examinar estos conjuntos de datos y descubrir información y tendencias ocultas con el fin de extraer conocimientos y anticipar resultados. Los enfoques actuales carecen de una categorización y una precisión de predicción considerables, ya que la obtención de datos sanitarios y clínicos estructurados requiere mucho tiempo y la predicción precisa de enfermedades mediante informes en tiempo real es una tarea ardua y de alta carga computacional. Por lo tanto, es esencial comprender los motivos que subyacen a los enfoques de aprendizaje automático en la atención sanitaria, ya que la precisión y la exactitud suelen ser fundamentales en los problemas sanitarios. El objetivo es construir un modelo predictivo de aprendizaje automático clínico generalizado utilizando algoritmos de clasificación supervisados, con el fin de predecir varias enfermedades comunes pero graves a través de una salida binaria.

  • von Mohammad Zeeshan
    60,90 €

    In der Gesundheitsbranche ist die Big-Data-Analytik von großer Bedeutung, da die Branche selbst ein riesiges Meer von Datensätzen beherbergt. Die Analytik wird eingesetzt, um diese Datensätze zu untersuchen und verborgene Informationen und Trends aufzudecken, um Wissen zu extrahieren und Ergebnisse vorherzusehen. Die derzeit vorhandenen Ansätze lassen eine erhebliche Kategorisierungs- und Vorhersagegenauigkeit vermissen, da das Abrufen strukturierter Daten aus dem Gesundheitswesen und klinischen Bereichen zeitaufwändig ist und die genaue Vorhersage von Krankheiten anhand von Echtzeitberichten eine schwierige und rechenintensive Aufgabe darstellt. Daher ist es wichtig, die Motive hinter den Ansätzen des maschinellen Lernens im Gesundheitswesen zu verstehen, da Präzision und Genauigkeit bei Problemen im Gesundheitswesen oft entscheidend sind. Ziel ist es, ein verallgemeinertes klinisches maschinelles Lernvorhersagemodell unter Verwendung überwachter Klassifizierungsalgorithmen zu erstellen, um verschiedene häufige, aber schwere Krankheiten anhand einer binären Ausgabe vorherzusagen.

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.