Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Bücher der Reihe Graduate Texts in Mathematics

Filter
Filter
Ordnen nachSortieren Reihenfolge der Serie
  • von Fernando Albiac
    60,00 €

    This book grew out of a one-semester course given by the second author in 2001 and a subsequent two-semester course in 2004-2005, both at the Univ- sity of Missouri-Columbia. The text is intended for a graduate student who has already had a basic introduction to functional analysis; the aim is to give a reasonably brief and self-contained introduction to classical Banach space theory. Banach space theory has advanced dramatically in the last 50 years and webelievethatthetechniquesthathavebeendevelopedareverypowerfuland should be widely disseminated amongst analysts in general and not restricted to a small group of specialists. Therefore we hope that this book will also prove of interest to an audience who may not wish to pursue research in this area but still would like to understand what is known about the structure of the classical spaces. Classical Banach space theory developed as an attempt to answer very natural questions on the structure of Banach spaces; many of these questions date back to the work of Banach and his school in Lvov. It enjoyed, perhaps, its golden period between 1950 and 1980, culminating in the de?nitive books by Lindenstrauss and Tzafriri [138] and [139], in 1977 and 1979 respectively. The subject is still very much alive but the reader will see that much of the basic groundwork was done in this period.

  • von Peter Petersen
    53,00 €

    This book is meant to be an introduction to Riemannian geometry. The reader is assumed to have some knowledge of standard manifold theory, including basic theory of tensors, forms, and Lie groups. At times we shall also assume familiarity with algebraic topology and de Rham cohomology. Specifically, we recommend that the reader is familiar with texts like [14] or[76, vol. 1]. For the readers who have only learned something like the first two chapters of [65], we have an appendix which covers Stokes' theorem, Cech cohomology, and de Rham cohomology. The reader should also have a nodding acquaintance with ordinary differential equations. For this, a text like [59] is more than sufficient. Most of the material usually taught in basic Riemannian geometry, as well as several more advanced topics, is presented in this text. Many of the theorems from Chapters 7 to 11 appear for the first time in textbook form. This is particularly surprising as we have included essentially only the material students ofRiemannian geometry must know. The approach we have taken deviates in some ways from the standard path. First and foremost, we do not discuss variational calculus, which is usually the sine qua non of the subject. Instead, we have taken a more elementary approach that simply uses standard calculus together with some techniques from differential equations.

  • von John Ratcliffe
    53,00 €

    This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar- gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap- ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de- voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in- tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.

  • von Mark R. Sepanski
    45,00 - 62,00 €

    Blending algebra, analysis, and topology, the study of compact Lie groups is one of the most beautiful areas of mathematics and a key stepping stone to the theory of general Lie groups. Assuming no prior knowledge of Lie groups, this book covers the structure and representation theory of compact Lie groups. Included is the construction of the Spin groups, Schur Orthogonality, the Peter-Weyl Theorem, the Plancherel Theorem, the Maximal Torus Theorem, the Commutator Theorem, the Weyl Integration and Character Formulas, the Highest Weight Classification, and the Borel-Weil Theorem. The necessary Lie algebra theory is also developed in the text with a streamlined approach focusing on linear Lie groups.Key Features are: - Provides an approach that minimizes advanced prerequisites; - Self-contained and systematic exposition requiring no previous exposure to Lie theory; -Advances quickly to the Peter-Weyl Theorem and its corresponding Fourier theory; - Streamlined Lie algebra discussion reduces the differential geometry prerequisite and allows a more rapid transition to the classification and construction of representations - Exercises sprinkled throughout.This beginning graduate level text, aimed primarily at Lie Groups courses and related topics, assumes familiarity with elementary concepts from group theory, analysis, and manifold theory. Students, research mathematicians, and physicists interested in Lie theory will find this text very useful.

  • von John Garnett
    62,00 €

    This book is an account of the theory of Hardy spaces in one dimension, with emphasis on some of the exciting developments of the past two decades or so. The last seven of the ten chapters are devoted in the main to these recent developments. The motif of the theory of Hardy spaces is the interplay between real, complex, and abstract analysis. While paying proper attention to each of the three aspects, the author has underscored the effectiveness of the methods coming from real analysis, many of them developed as part of a program to extend the theory to Euclidean spaces, where the complex methods are not available.

  • von Osman Güler
    57,00 €

  • von Pierre Antoine Grillet
    53,00 €

    About the first edition:"e;The text is geared to the needs of the beginning graduate student, covering with complete, well-written proofs the usual major branches of groups, rings, fields, and modules...[n]one of the material one expects in a book like this is missing, and the level of detail is appropriate for its intended audience."e; (Alberto Delgado, MathSciNet)"e;This text promotes the conceptual understanding of algebra as a whole, and that with great methodological mastery. Although the presentation is predominantly abstract...it nevertheless features a careful selection of important examples, together with a remarkably detailed and strategically skillful elaboration of the more sophisticated, abstract theories."e; (Werner Kleinert, Zentralblatt)For the new edition, the author has completely rewritten the text, reorganized many of the sections, and even cut or shortened material which is no longer essential. He has added a chapter on Ext and Tor, as well as a bit of topology.

  • von Albert N. Shiryaev
    48,00 €

    Advanced maths students have been waiting for this, the third edition of a text that deals with one of the fundamentals of their field. This book contains a systematic treatment of probability from the ground up, starting with intuitive ideas and gradually developing more sophisticated subjects, such as random walks and the Kalman-Bucy filter. Examples are discussed in detail, and there are a large number of exercises. This third edition contains new problems and exercises, new proofs, expanded material on financial mathematics, financial engineering, and mathematical statistics, and a final chapter on the history of probability theory.

  • von Ross Geoghegan
    57,00 €

    This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.

  • - Theory and Applications
    von Peter Abramenko & Kenneth S. Brown
    46,00 - 130,00 €

    This text started out as a revised version of Buildings by the second-named author [53], but it has grown into a much more voluminous book. The earlier bookwasintendedtogiveashort,friendly,elementaryintroductiontothet- ory,accessibletoreaderswithaminimalbackground.Moreover,itapproached buildings from only one point of view, sometimes called the "e;old-fashioned"e; approach: A building is a simplicial complex with certain properties. The current book includes all the material of the earlier one, but we have added a lot. In particular, we have included the "e;modern"e; (or "e;W-metric"e;) approach to buildings, which looks quite di?erent from the old-fashioned - proach but is equivalent to it. This has become increasingly important in the theory and applications of buildings. We have also added a thorough tre- ment of the Moufang property, which occupies two chapters. And we have added many new exercises and illustrations. Some of the exercises have hints or solutions in the back of the book. A more extensive set of solutions is ava- able in a separate solutions manual, which may be obtained from Springer's Mathematics Editorial Department. We have tried to add the new material in such a way that readers who are content with the old-fashioned approach can still get an elementary treatment of it by reading selected chapters or sections. In particular, many readers will want to omit the optional sections (marked with a star). The introduction below provides more detailed guidance to the reader.

  • von Gerd Grubb
    62,00 €

  • von Barbara MacCluer
    45,00 €

    Functional analysis arose in the early twentieth century and gradually, conquering one stronghold after another, became a nearly universal mathematical doctrine, not merely a new area of mathematics, but a new mathematical world view. Its appearance was the inevitable consequence of the evolution of all of nineteenth-century mathematics, in particular classical analysis and mathematical physics. Its original basis was formed by Cantor's theory of sets and linear algebra. Its existence answered the question of how to state general principles of a broadly interpreted analysis in a way suitable for the most diverse situations. A.M. Vershik ([45], p. 438). This text evolved from the content of a one semester introductory course in fu- tional analysis that I have taught a number of times since 1996 at the University of Virginia. My students have included ?rst and second year graduate students prep- ing for thesis work in analysis, algebra, or topology, graduate students in various departments in the School of Engineering and Applied Science, and several und- graduate mathematics or physics majors. After a ?rst draft of the manuscript was completed, it was also used for an independent reading course for several und- graduates preparing for graduate school.

  • von Robin Hartshorne
    56,00 €

    In the fall semester of 1979 I gave a course on deformation theory at Berkeley. My goal was to understand completely Grothendieck's local study of the Hilbert scheme using the cohomology of the normal bundle to characterize the Zariski tangent space and the obstructions to deformations. At the same timeIstartedwritinglecturenotesforthecourse.However,thewritingproject soon foundered as the subject became more intricate, and the result was no more than ?ve of a projected thirteen sections, corresponding roughly to s- tions 1, 2, 3, 5, 6 of the present book. These handwritten notes circulated quietly for many years until David Eisenbud urged me to complete them and at the same time (without consu- ing me) mentioned to an editor at Springer, "e;You know Robin has these notes on deformation theory, which could easily become a book."e; When asked by Springer if I would write such a book, I immediately refused, since I was then planning another book on space curves. But on second thought, I decided this was,afterall,aworthyproject,andthatbywritingImight?nallyunderstand the subject myself. So during 2004 I expanded the old notes into a rough draft, which I used to teach a course during the spring semester of 2005. Those notes, rewritten once more, with the addition of exercises, form the book you are now reading. Mygoalinthisbookistointroducethemainideasofdeformationtheoryin algebraicgeometryandtoillustratetheiruseinanumberoftypicalsituations.

  • von John Lee
    57,00 €

    This book is an introduction to manifolds at the beginning graduate level. It contains the essential topological ideas that are needed for the further study of manifolds, particularly in the context of differential geometry, algebraic topology, and related fields. Its guiding philosophy is to develop these ideas rigorously but economically, with minimal prerequisites and plenty of geometric intuition.Although this second edition has the same basic structure as the first edition, it has been extensively revised and clarified; not a single page has been left untouched. The major changes include a new introduction to CW complexes (replacing most of the material on simplicial complexes in Chapter 5); expanded treatments of manifolds with boundary, local compactness, group actions, and proper maps; and a new section on paracompactness.This text is designed to be used for an introductory graduate course on the geometry and topology of manifolds. It should be accessible to any student who has completed a solid undergraduate degree in mathematics. The author's book Introduction to Smooth Manifolds is meant to act as a sequel to this book.

  • von Henri Cohen
    62,00 €

    The computation of invariants of algebraic number fields such as integral bases, discriminants, prime decompositions, ideal class groups, and unit groups is important both for its own sake and for its numerous applications, for example, to the solution of Diophantine equations. The practical com- pletion of this task (sometimes known as the Dedekind program) has been one of the major achievements of computational number theory in the past ten years, thanks to the efforts of many people. Even though some practical problems still exist, one can consider the subject as solved in a satisfactory manner, and it is now routine to ask a specialized Computer Algebra Sys- tem such as Kant/Kash, liDIA, Magma, or Pari/GP, to perform number field computations that would have been unfeasible only ten years ago. The (very numerous) algorithms used are essentially all described in A Course in Com- putational Algebraic Number Theory, GTM 138, first published in 1993 (third corrected printing 1996), which is referred to here as [CohO]. That text also treats other subjects such as elliptic curves, factoring, and primality testing. Itis important and natural to generalize these algorithms. Several gener- alizations can be considered, but the most important are certainly the gen- eralizations to global function fields (finite extensions of the field of rational functions in one variable overa finite field) and to relative extensions ofnum- ber fields. As in [CohO], in the present book we will consider number fields only and not deal at all with function fields.

  • von Hakan Hedenmalm
    50,00 - 69,00 €

    Preliminary Text. Do not use. 15 years ago the function theory and operator theory connected with the Hardy spaces was well understood (zeros; factorization; interpolation; invariant subspaces; Toeplitz and Hankel operators, etc.). None of the techniques that led to all the information about Hardy spaces worked on their close relatives the Bergman spaces. Most mathematicians who worked in the intersection of function theory and operator theory thought that progress on the Bergman spaces was unlikely. Now the situation has completely changed. Today there are rich theories describing the Bergman spaces and their operators. Research interest and research activity in the area has been high for several years. A book is badly needed on Bergman spaces and the three authors are the right people to write it.

  • von Robert Goldblatt
    61,00 - 84,00 €

    There are good reasons to believe that nonstandard analysis, in some ver- sion or other, will be the analysis of the future. KURT GODEL This book is a compilation and development of lecture notes written for a course on nonstandard analysis that I have now taught several times. Students taking the course have typically received previous introductions to standard real analysis and abstract algebra, but few have studied formal logic. Most of the notes have been used several times in class and revised in the light of that experience. The earlier chapters could be used as the basis of a course at the upper undergraduate level, but the work as a whole, including the later applications, may be more suited to a beginning graduate course. This prefacedescribes my motivationsand objectives in writingthe book. For the most part, these remarks are addressed to the potential instructor. Mathematical understanding develops by a mysterious interplay between intuitive insight and symbolic manipulation. Nonstandard analysis requires an enhanced sensitivity to the particular symbolic form that is used to ex- press our intuitions, and so the subject poses some unique and challenging pedagogical issues. The most fundamental ofthese is how to turn the trans- fer principle into a working tool of mathematical practice. I have found it vi Preface unproductive to try to give a proof of this principle by introducing the formal Tarskian semantics for first-order languages and working through the proofofLos's theorem.

  • von John D. Dixon
    57,00 €

    Permutation Groups form one of the oldest parts of group theory. Through the ubiquity of group actions and the concrete representations which they afford, both finite and infinite permutation groups arise in many parts of mathematics and continue to be a lively topic of research in their own right. The book begins with the basic ideas, standard constructions and important examples in the theory of permutation groups.It then develops the combinatorial and group theoretic structure of primitive groups leading to the proof of the pivotal O'Nan-Scott Theorem which links finite primitive groups with finite simple groups. Special topics covered include the Mathieu groups, multiply transitive groups, and recent work on the subgroups of the infinite symmetric groups. This text can serve as an introduction to permutation groups in a course at the graduate or advanced undergraduate level, or for self- study. It includes many exercises and detailed references to the current literature.

  • von Rajendra Bhatia
    57,00 €

    A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and gradu- ate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathe- matical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to acquire hard tools and then learn how to use them delicately. The reader is expected to be very thoroughly familiar with basic lin- ear algebra. The standard texts Finite-Dimensional Vector Spaces by P.R.

  • von Glen E. Bredon
    60,00 - 63,00 €

    This book is primarily concerned with the study of cohomology theories of general topological spaces with "e;general coefficient systems. "e; Sheaves play several roles in this study. For example, they provide a suitable notion of "e;general coefficient systems. "e; Moreover, they furnish us with a common method of defining various cohomology theories and of comparison between different cohomology theories. The parts of the theory of sheaves covered here are those areas impor- tant to algebraic topology. Sheaf theory is also important in other fields of mathematics, notably algebraic geometry, but that is outside the scope of the present book. Thus a more descriptive title for this book might have been Algebraic Topology from the Point of View of Sheaf Theory. Several innovations will be found in this book. Notably, the con- cept of the "e;tautness"e; of a subspace (an adaptation of an analogous no- tion of Spanier to sheaf-theoretic cohomology) is introduced and exploited throughout the book. The fact that sheaf-theoretic cohomology satisfies 1 the homotopy property is proved for general topological spaces. Also, relative cohomology is introduced into sheaf theory. Concerning relative cohomology, it should be noted that sheaf-theoretic cohomology is usually considered as a "e;single space"e; theory.

  • von Peter Borwein
    50,00 - 84,00 €

    Polynomials pervade mathematics, virtually every branch of mathematics from algebraic number theory and algebraic geometry to applied analysis and computer science, has a corpus of theory arising from polynomials. The material explored in this book primarily concerns polynomials as they arise in analysis; it focuses on polynomials and rational functions of a single variable. The book is self-contained and assumes at most a senior-undergraduate familiarity with real and complex analysis. After an introduction to the geometry of polynomials and a discussion of refinements of the Fundamental Theorem of Algebra, the book turns to a consideration of various special polynomials. Chebyshev and Descartes systems are then introduced, and Muntz systems and rational systems are examined in detail. Subsequent chapters discuss denseness questions and the inequalities satisfied by polynomials and rational functions. Appendices on algorithms and computational concerns, on the interpolation theorem, and on orthogonality and irrationality conclude the book.

  • von Rainer Kress
    62,00 - 75,00 €

    No applied mathematician can be properly trained without some basic un- derstanding ofnumerical methods, Le., numerical analysis. And no scientist and engineer should be using a package program for numerical computa- tions without understanding the program's purpose and its limitations. This book is an attempt to provide some of the required knowledge and understanding. It is written in a spirit that considers numerical analysis not merely as a tool for solving applied problems but also as a challenging and rewarding part of mathematics. The main goal is to provide insight into numerical analysis rather than merely to provide numerical recipes. The book evolved from the courses on numerical analysis I have taught since 1971 at the University ofGottingen and may be viewed as a successor of an earlier version jointly written with Bruno Brosowski [10] in 1974. It aims at presenting the basic ideas of numerical analysis in a style as concise as possible. Its volume is scaled to a one-year course, i.e., a two-semester course, addressing second-yearstudents at a German university or advanced undergraduate or first-year graduate students at an American university.

  • von Serge Lang
    62,00 €

    The present book aims to give a fairly comprehensive account of the fundamentals of differential manifolds and differential geometry. The size of the book influenced where to stop, and there would be enough material for a second volume (this is not a threat). At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differen- tiable maps in them (immersions, embeddings, isomorphisms, etc. ). One may also use differentiable structures on topological manifolds to deter- mine the topological structure of the manifold (for example, it la Smale [Sm 67]). In differential geometry, one puts an additional structure on the differentiable manifold (a vector field, a spray, a 2-form, a Riemannian metric, ad lib. ) and studies properties connected especially with these objects. Formally, one may say that one studies properties invariant under the group of differentiable automorphisms which preserve the additional structure. In differential equations, one studies vector fields and their in- tegral curves, singular points, stable and unstable manifolds, etc. A certain number of concepts are essential for all three, and are so basic and elementary that it is worthwhile to collect them together so that more advanced expositions can be given without having to start from the very beginnings.

  • von Tsit-Yuen Lam
    63,00 - 64,00 €

    Textbook writing must be one of the cruelest of self-inflicted tortures. - Carl Faith Math Reviews 54: 5281 So why didn't I heed the warning of a wise colleague, especially one who is a great expert in the subject of modules and rings? The answer is simple: I did not learn about it until it was too late! My writing project in ring theory started in 1983 after I taught a year-long course in the subject at Berkeley. My original plan was to write up my lectures and publish them as a graduate text in a couple of years. My hopes of carrying out this plan on schedule were, however, quickly dashed as I began to realize how much material was at hand and how little time I had at my disposal. As the years went by, I added further material to my notes, and used them to teach different versions of the course. Eventually, I came to the realization that writing a single volume would not fully accomplish my original goal of giving a comprehensive treatment of basic ring theory. At the suggestion of Ulrike Schmickler-Hirzebruch, then Mathematics Editor of Springer-Verlag, I completed the first part of my project and published the write- up in 1991 as A First Course in Noncommutative Rings, GTM 131, hereafter referred to as First Course (or simply FC).

  • von Douglas S. Bridges
    47,00 - 59,00 €

    Aimed at mathematicians and computer scientists who will only be exposed to one course in this area, Computability: A Mathematical Sketchbook provides a brief but rigorous introduction to the abstract theory of computation, sometimes also referred to as recursion theory. It develops major themes in computability theory, such as Rice's theorem and the recursion theorem, and provides a systematic account of Blum's complexity theory as well as an introduction to the theory of computable real numbers and functions. The book is intended as a university text, but it may also be used for self-study; appropriate exercises and solutions are included.

  • von James W. Vick
    56,00 - 79,00 €

    The 20 years since the publication of this book have been an era of continuing growth and development in the field of algebraic topology. New generations of young mathematicians have been trained, and classical problems have been solved, particularly through the application of geometry and knot theory. Diverse new resources for introductory coursework have appeared, but there is persistent interest in an intuitive treatment of the basic ideas. This second edition has been expanded through the addition of a chapter on covering spaces. By analysis of the lifting problem it introduces the funda- mental group and explores its properties, including Van Kampen's Theorem and the relationship with the first homology group. It has been inserted after the third chapter since it uses some definitions and results included prior to that point. However, much of the material is directly accessible from the same background as Chapter 1, so there would be some flexibility in how these topics are integrated into a course. The Bibliography has been supplemented by the addition of selected books and historical articles that have appeared since 1973.

  • von Benson Farb
    61,00 - 75,00 €

    About This Book This book is meant to be used by beginning graduate students. It covers basic material needed by any student of algebra, and is essential to those specializing in ring theory, homological algebra, representation theory and K-theory, among others. It will also be of interest to students of algebraic topology, functional analysis, differential geometry and number theory. Our approach is more homological than ring-theoretic, as this leads the to many important areas of mathematics. This ap- student more quickly proach is also, we believe, cleaner and easier to understand. However, the more classical, ring-theoretic approach, as well as modern extensions, are also presented via several exercises and sections in Chapter Five. We have tried not to leave any gaps on the paths to proving the main theorem- at most we ask the reader to fill in details for some of the sideline results; indeed this can be a fruitful way of solidifying one's understanding.

  • von Serge Lang
    53,00 €

    This book is meant as a text for a first year graduate course in analysis. Any standard course in undergraduate analysis will constitute sufficient preparation for its understanding, for instance, my Undergraduate Anal- ysis. I assume that the reader is acquainted with notions of uniform con- vergence and the like. In this third edition, I have reorganized the book by covering inte- gration before functional analysis. Such a rearrangement fits the way courses are taught in all the places I know of. I have added a number of examples and exercises, as well as some material about integration on the real line (e.g. on Dirac sequence approximation and on Fourier analysis), and some material on functional analysis (e.g. the theory of the Gelfand transform in Chapter XVI). These upgrade previous exercises to sections in the text. In a sense, the subject matter covers the same topics as elementary calculus, viz. linear algebra, differentiation and integration. This time, however, these subjects are treated in a manner suitable for the training of professionals, i.e. people who will use the tools in further investiga- tions, be it in mathematics, or physics, or what have you. In the first part, we begin with point set topology, essential for all analysis, and we cover the most important results.

  • von William A. Adkins
    62,00 - 84,00 €

    This book is designed as a text for a first-year graduate algebra course. As necessary background we would consider a good undergraduate linear algebra course. An undergraduate abstract algebra course, while helpful, is not necessary (and so an adventurous undergraduate might learn some algebra from this book). Perhaps the principal distinguishing feature of this book is its point of view. Many textbooks tend to be encyclopedic. We have tried to write one that is thematic, with a consistent point of view. The theme, as indicated by our title, is that of modules (though our intention has not been to write a textbook purely on module theory). We begin with some group and ring theory, to set the stage, and then, in the heart of the book, develop module theory. Having developed it, we present some of its applications: canonical forms for linear transformations, bilinear forms, and group representations. Why modules? The answer is that they are a basic unifying concept in mathematics. The reader is probably already familiar with the basic role that vector spaces play in mathematics, and modules are a generaliza- tion of vector spaces. (To be precise, modules are to rings as vector spaces are to fields.

  • von Armand Borel
    52,00 €

    This revised, enlarged edition of Linear Algebraic Groups (1969) starts by presenting foundational material on algebraic groups, Lie algebras, transformation spaces, and quotient spaces. It then turns to solvable groups, general properties of linear algebraic groups, and Chevally's structure theory of reductive groups over algebraically closed groundfields. It closes with a focus on rationality questions over non-algebraically closed fields.

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.