Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Bücher der Reihe Graduate Texts in Mathematics

Filter
Filter
Ordnen nachSortieren Reihenfolge der Serie
  • von R. E. Edwards
    75,00 €

    appear in Volume 1, a Roman numeral "e;I"e; has been prefixed as a reminder to the reader; thus, for example, "e;I,B.2.1 "e; refers to Appendix B.2.1 in Volume 1. An understanding of the main topics discussed in this book does not, I hope, hinge upon repeated consultation of the items listed in the bibli- ography. Readers with a limited aim should find strictly necessary only an occasional reference to a few of the book listed. The remaining items, and especially the numerous research papers mentioned, are listed as an aid to those readers who wish to pursue the subject beyond the limits reached in this book; such readers must be prepared to make the very considerable effort called for in making an acquaintance with current research literature. A few of the research papers listed cover devel- opments that came to my notice too late for mention in the main text. For this reason, any attempted summary in the main text of the current standing of a research problem should be supplemented by an examin- ation of the bibliography and by scrutiny of the usual review literature.

  • von M. Golubitsky
    80,00 €

    This book aims to present to first and second year graduate students a beautiful and relatively accessible field of mathematics-the theory of singu- larities of stable differentiable mappings. The study of stable singularities is based on the now classical theories of Hassler Whitney, who determined the generic singularities (or lack of them) of Rn ~ Rm (m ~ 2n - 1) and R2 ~ R2, and Marston Morse, for mappings who studied these singularities for Rn ~ R. It was Rene Thorn who noticed (in the late '50's) that all of these results could be incorporated into one theory. The 1960 Bonn notes of Thom and Harold Levine (reprinted in [42]) gave the first general exposition of this theory. However, these notes preceded the work of Bernard Malgrange [23] on what is now known as the Malgrange Preparation Theorem-which allows the relatively easy computation of normal forms of stable singularities as well as the proof of the main theorem in the subject-and the definitive work of John Mather. More recently, two survey articles have appeared, by Arnold [4] and Wall [53], which have done much to codify the new material; still there is no totally accessible description of this subject for the beginning student. We hope that these notes will partially fill this gap. In writing this manuscript, we have repeatedly cribbed from the sources mentioned above-in particular, the Thom-Levine notes and the six basic papers by Mather.

  • von K. Kendig
    63,00 €

    This book was written to make learning introductory algebraic geometry as easy as possible. It is designed for the general first- and second-year graduate student, as well as for the nonspecialist; the only prerequisites are a one-year course in algebra and a little complex analysis. There are many examples and pictures in the book. One's sense of intuition is largely built up from exposure to concrete examples, and intuition in algebraic geometry is no exception. I have also tried to avoid too much generalization. If one under- stands the core of an idea in a concrete setting, later generalizations become much more meaningful. There are exercises at the end of most sections so that the reader can test his understanding of the material. Some are routine, others are more challenging. Occasionally, easily established results used in the text have been made into exercises. And from time to time, proofs of topics not covered in the text are sketched and the reader is asked to fill in the details. Chapter I is of an introductory nature. Some of the geometry of a few specific algebraic curves is worked out, using a tactical approach that might naturally be tried by one not familiar with the general methods intro- duced later in the book. Further examples in this chapter suggest other basic properties of curves. In Chapter II, we look at curves more rigorously and carefully.

  • von N. Jacobson
    74,00 €

    The present volume is the first of three that will be published under the general title Lectures in Abstract Algebra. These vol- umes are based on lectures which the author has given during the past ten years at the University of North Carolina, at The Johns Hopkins University, and at Yale "e;University. The general plan of the work IS as follows: The present first volume gives an introduction to abstract algebra and gives an account of most of the important algebraIc concepts. In a treatment of this type it is impossible to give a comprehensive account of the topics which are introduced. Nevertheless we have tried to go beyond the foundations and elementary properties of the algebraic sys- tems. This has necessitated a certain amount of selection and omission. We feel that even at the present stage a deeper under- standing of a few topics is to be preferred to a superficial under- standing of many. The second and third volumes of this work will be more special- ized in nature and will attempt to give comprehensive accounts of the topics which they treat. Volume II will bear the title Linear Algebra and will deal with the theorv of vectQ!_JlP. -a. ces. . . . . Volume III, The Theory of Fields and Galois Theory, will be con- cerned with the algebraic structure offieras and with valuations of fields. All three volumes have been planned as texts for courses.

  • von G. Takeuti
    80,00 €

    This text deals with three basic techniques for constructing models of Zermelo-Fraenkel set theory: relative constructibility, Cohen's forcing, and Scott-Solovay's method of Boolean valued models. Our main concern will be the development of a unified theory that encompasses these techniques in one comprehensive framework. Consequently we will focus on certain funda- mental and intrinsic relations between these methods of model construction. Extensive applications will not be treated here. This text is a continuation of our book, "e;I ntroduction to Axiomatic Set Theory,"e; Springer-Verlag, 1971; indeed the two texts were originally planned as a single volume. The content of this volume is essentially that of a course taught by the first author at the University of Illinois in the spring of 1969. From the first author's lectures, a first draft was prepared by Klaus Gloede with the assistance of Donald Pelletier and the second author. This draft was then rcvised by the first author assisted by Hisao Tanaka. The introductory material was prepared by the second author who was also responsible for the general style of exposition throughout the text. We have inc1uded in the introductory material al1 the results from Boolean algebra and topology that we need. When notation from our first volume is introduced, it is accompanied with a deflnition, usually in a footnote. Consequently a reader who is familiar with elementary set theory will find this text quite self-contained.

  • von John C. Oxtoby
    78,00 €

    In this edition, a set of Supplementary Notes and Remarks has been added at the end, grouped according to chapter. Some of these call attention to subsequent developments, others add further explanation or additional remarks. Most of the remarks are accompanied by a briefly indicated proof, which is sometimes different from the one given in the reference cited. The list of references has been expanded to include many recent contributions, but it is still not intended to be exhaustive. John C. Oxtoby Bryn Mawr, April 1980 Preface to the First Edition This book has two main themes: the Baire category theorem as a method for proving existence, and the "e;duality"e; between measure and category. The category method is illustrated by a variety of typical applications, and the analogy between measure and category is explored in all of its ramifications. To this end, the elements of metric topology are reviewed and the principal properties of Lebesgue measure are derived. It turns out that Lebesgue integration is not essential for present purposes-the Riemann integral is sufficient. Concepts of general measure theory and topology are introduced, but not just for the sake of generality. Needless to say, the term "e;category"e; refers always to Baire category; it has nothing to do with the term as it is used in homological algebra.

  • von R. B. Holmes
    71,00 €

    This book has evolved from my experience over the past decade in teaching and doing research in functional analysis and certain of its appli- cations. These applications are to optimization theory in general and to best approximation theory in particular. The geometric nature of the subjects has greatly influenced the approach to functional analysis presented herein, especially its basis on the unifying concept of convexity. Most of the major theorems either concern or depend on properties of convex sets; the others generally pertain to conjugate spaces or compactness properties, both of which topics are important for the proper setting and resolution of optimization problems. In consequence, and in contrast to most other treatments of functional analysis, there is no discussion of spectral theory, and only the most basic and general properties of linear operators are established. Some of the theoretical highlights of the book are the Banach space theorems associated with the names of Dixmier, Krein, James, Smulian, Bishop-Phelps, Brondsted-Rockafellar, and Bessaga-Pelczynski. Prior to these (and others) we establish to two most important principles of geometric functional analysis: the extended Krein-Milman theorem and the Hahn- Banach principle, the latter appearing in ten different but equivalent formula- tions (some of which are optimality criteria for convex programs). In addition, a good deal of attention is paid to properties and characterizations of conjugate spaces, especially reflexive spaces.

  • von James E. Humphreys
    62,00 - 71,00 €

    James E. Humphreys is presently Professor of Mathematics at the University of Massachusetts at Amherst. Before this, he held the posts of Assistant Professor of Mathematics at the University of Oregon and Associate Professor of Mathematics at New York University. His main research interests include group theory and Lie algebras. He graduated from Oberlin College in 1961. He did graduate work in philosophy and mathematics at Cornell University and later received hi Ph.D. from Yale University if 1966. In 1972, Springer-Verlag published his first book, "e;Introduction to Lie Algebras and Representation Theory"e; (graduate Texts in Mathematics Vol. 9).

  • von Werner H. Greub
    75,00 - 97,00 €

    This textbook gives a detailed and comprehensive presentation of linear algebra based on an axiomatic treatment of linear spaces. For this fourth edition some new material has been added to the text, for instance, the intrinsic treatment of the classical adjoint of a linear transformation in Chapter IV, as well as the discussion of quaternions and the classifica- tion of associative division algebras in Chapter VII. Chapters XII and XIII have been substantially rewritten for the sake of clarity, but the contents remain basically the same as before. Finally, a number of problems covering new topics-e.g. complex structures, Caylay numbers and symplectic spaces - have been added. I should like to thank Mr. M. L. Johnson who made many useful suggestions for the problems in the third edition. I am also grateful to my colleague S. Halperin who assisted in the revision of Chapters XII and XIII and to Mr. F. Gomez who helped to prepare the subject index. Finally, I have to express my deep gratitude to my colleague J. R. Van- stone who worked closely with me in the preparation of all the revisions and additions and who generously helped with the proof reading.

  • von Morris W. Hirsch
    62,00 €

    This book presents some of the basic topological ideas used in studying differentiable manifolds and maps. Mathematical prerequisites have been kept to a minimum; the standard course in analysis and general topology is adequate preparation. An appendix briefly summarizes some of the back- ground material. In order to emphasize the geometrical and intuitive aspects of differen- tial topology, I have avoided the use of algebraic topology, except in a few isolated places that can easily be skipped. For the same reason I make no use of differential forms or tensors. In my view, advanced algebraic techniques like homology theory are better understood after one has seen several examples of how the raw material of geometry and analysis is distilled down to numerical invariants, such as those developed in this book: the degree of a map, the Euler number of a vector bundle, the genus of a surface, the cobordism class of a manifold, and so forth. With these as motivating examples, the use of homology and homotopy theory in topology should seem quite natural. There are hundreds of exercises, ranging in difficulty from the routine to the unsolved. While these provide examples and further developments of the theory, they are only rarely relied on in the proofs of theorems.

  • von John G. Kemeny
    63,00 - 77,00 €

    With the first edition out of print, we decided to arrange for republi- cation of Denumerrible Markov Ohains with additional bibliographic material. The new edition contains a section Additional Notes that indicates some of the developments in Markov chain theory over the last ten years. As in the first edition and for the same reasons, we have resisted the temptation to follow the theory in directions that deal with uncountable state spaces or continuous time. A section entitled Additional References complements the Additional Notes. J. W. Pitman pointed out an error in Theorem 9-53 of the first edition, which we have corrected. More detail about the correction appears in the Additional Notes. Aside from this change, we have left intact the text of the first eleven chapters. The second edition contains a twelfth chapter, written by David Griffeath, on Markov random fields. We are grateful to Ted Cox for his help in preparing this material. Notes for the chapter appear in the section Additional Notes. J.G.K., J.L.S., A.W.K.

  • von M. Loeve
    60,00 €

    This fourth edition contains several additions. The main ones con- cern three closely related topics: Brownian motion, functional limit distributions, and random walks. Besides the power and ingenuity of their methods and the depth and beauty of their results, their importance is fast growing in Analysis as well as in theoretical and applied Proba- bility. These additions increased the book to an unwieldy size and it had to be split into two volumes. About half of the first volume is devoted to an elementary introduc- tion, then to mathematical foundations and basic probability concepts and tools. The second half is devoted to a detailed study of Independ- ence which played and continues to playa central role both by itself and as a catalyst. The main additions consist of a section on convergence of probabilities on metric spaces and a chapter whose first section on domains of attrac- tion completes the study of the Central limit problem, while the second one is devoted to random walks. About a third of the second volume is devoted to conditioning and properties of sequences of various types of dependence. The other two thirds are devoted to random functions; the last Part on Elements of random analysis is more sophisticated. The main addition consists of a chapter on Brownian motion and limit distributions.

  • von R. Beals
    49,00 - 55,00 €

    Once upon a time students of mathematics and students of science or engineering took the same courses in mathematical analysis beyond calculus. Now it is common to separate"e; advanced mathematics for science and engi- neering"e; from what might be called "e;advanced mathematical analysis for mathematicians."e; It seems to me both useful and timely to attempt a reconciliation. The separation between kinds of courses has unhealthy effects. Mathe- matics students reverse the historical development of analysis, learning the unifying abstractions first and the examples later (if ever). Science students learn the examples as taught generations ago, missing modern insights. A choice between encountering Fourier series as a minor instance of the repre- sentation theory of Banach algebras, and encountering Fourier series in isolation and developed in an ad hoc manner, is no choice at all. It is easy to recognize these problems, but less easy to counter the legiti- mate pressures which have led to a separation. Modern mathematics has broadened our perspectives by abstraction and bold generalization, while developing techniques which can treat classical theories in a definitive way. On the other hand, the applier of mathematics has continued to need a variety of definite tools and has not had the time to acquire the broadest and most definitive grasp-to learn necessary and sufficient conditions when simple sufficient conditions will serve, or to learn the general framework encompass- ing different examples.

  • von Frank W. Warner
    56,00 €

    Foundations of Differentiable Manifolds and Lie Groups gives a clear, detailed, and careful development of the basic facts on manifold theory and Lie Groups. It includes differentiable manifolds, tensors and differentiable forms. Lie groups and homogenous spaces, integration on manifolds, and in addition provides a proof of the de Rham theorem via sheaf cohomology theory, and develops the local theory of elliptic operators culminating in a proof of the Hodge theorem. Those interested in any of the diverse areas of mathematics requiring the notion of a differentiable manifold will find this beginning graduate-level text extremely useful.

  • von Joe Harris
    57,00 - 62,00 €

    This book is based on one-semester courses given at Harvard in 1984, at Brown in 1985, and at Harvard in 1988. It is intended to be, as the title suggests, a first introduction to the subject. Even so, a few words are in order about the purposes of the book. Algebraic geometry has developed tremendously over the last century. During the 19th century, the subject was practiced on a relatively concrete, down-to-earth level; the main objects of study were projective varieties, and the techniques for the most part were grounded in geometric constructions. This approach flourished during the middle of the century and reached its culmination in the work of the Italian school around the end of the 19th and the beginning of the 20th centuries. Ultimately, the subject was pushed beyond the limits of its foundations: by the end of its period the Italian school had progressed to the point where the language and techniques of the subject could no longer serve to express or carry out the ideas of its best practitioners.

  • von R. Michael Range
    57,00 €

    The subject of this book is Complex Analysis in Several Variables. This text begins at an elementary level with standard local results, followed by a thorough discussion of the various fundamental concepts of "e;complex convexity"e; related to the remarkable extension properties of holomorphic functions in more than one variable. It then continues with a comprehensive introduction to integral representations, and concludes with complete proofs of substantial global results on domains of holomorphy and on strictly pseudoconvex domains inC"e;, including, for example, C. Fefferman's famous Mapping Theorem. The most important new feature of this book is the systematic inclusion of many of the developments of the last 20 years which centered around integral representations and estimates for the Cauchy-Riemann equations. In particu- lar, integral representations are the principal tool used to develop the global theory, in contrast to many earlier books on the subject which involved methods from commutative algebra and sheaf theory, and/or partial differ- ential equations. I believe that this approach offers several advantages: (1) it uses the several variable version of tools familiar to the analyst in one complex variable, and therefore helps to bridge the often perceived gap between com- plex analysis in one and in several variables; (2) it leads quite directly to deep global results without introducing a lot of new machinery; and (3) concrete integral representations lend themselves to estimations, therefore opening the door to applications not accessible by the earlier methods.

  • von Serge Lang
    70,00 €

    The present book is meant as a text for a course on complex analysis at the advanced undergraduate level, or first-year graduate level. Somewhat more material has been included than can be covered at leisure in one term, to give opportunities for the instructor to exercise his taste, and lead the course in whatever direction strikes his fancy at the time. A large number of routine exercises are included for the more standard portions, and a few harder exercises of striking theoretical interest are also included, but may be omitted in courses addressed to less advanced students. In some sense, I think the classical German prewar texts were the best (Hurwitz-Courant, Knopp, Bieberbach, etc. ) and I would recom- mend to anyone to look through them. More recent texts have empha- sized connections with real analysis, which is important, but at the cost of exhibiting succinctly and clearly what is peculiar about complex anal- ysis: the power series expansion, the uniqueness of analytic continuation, and the calculus of residues. The systematic elementary development of formal and convergent power series was standard fare in the German texts, but only Cartan, in the more recent books, includes this material, which I think is quite essential, e. g. , for differential equations. I have written a short text, exhibiting these features, making it applicable to a wide variety of tastes. The book essentially decomposes into two parts.

  • von Dinakar Ramakrishnan
    66,00 €

    This book grew out of notes from several courses that the first author has taught over the past nine years at the California Institute of Technology, and earlier at the Johns Hopkins University, Cornell University, the University of Chicago, and the University of Crete. Our general aim is to provide a modern approach to number theory through a blending of complementary algebraic and analytic perspectives, emphasizing harmonic analysis on topological groups. Our more particular goal is to cover Jolm Tate's visionary thesis, giving virtually all of the necessary analytic details and topological preliminaries-technical prereq- uisites that are often foreign to the typical, more algebraically inclined number theorist. Most of the existing treatments of Tate's thesis, including Tate's own, range from terse to cryptic; our intent is to be more leisurely, more comprehen- sive, and more comprehensible. To this end we have assembled material that has admittedly been treated elsewhere, but not in a single volume with so much detail and not with our particular focus. We address our text to students who have taken a year of graduate-level courses in algebra, analysis, and topology. While our choice of objects and methods is naturally guided by the specific mathematical goals of the text, our approach is by no means narrow. In fact, the subject matter at hand is germane not only to budding number theorists, but also to students of harmonic analysis or the representation theory of Lie groups.

  • von Ward Cheney
    62,00 - 84,00 €

    This book evolved from a course at our university for beginning graduate stu- dents in mathematics-particularly students who intended to specialize in ap- plied mathematics. The content of the course made it attractive to other math- ematics students and to graduate students from other disciplines such as en- gineering, physics, and computer science. Since the course was designed for two semesters duration, many topics could be included and dealt with in de- tail. Chapters 1 through 6 reflect roughly the actual nature of the course, as it was taught over a number of years. The content of the course was dictated by a syllabus governing our preliminary Ph. D. examinations in the subject of ap- plied mathematics. That syllabus, in turn, expressed a consensus of the faculty members involved in the applied mathematics program within our department. The text in its present manifestation is my interpretation of that syllabus: my colleagues are blameless for whatever flaws are present and for any inadvertent deviations from the syllabus. The book contains two additional chapters having important material not included in the course: Chapter 8, on measure and integration, is for the ben- efit of readers who want a concise presentation of that subject, and Chapter 7 contains some topics closely allied, but peripheral, to the principal thrust of the course. This arrangement of the material deserves some explanation.

  • von Melvyn B. Nathanson
    79,00 - 110,00 €

    [Hilbert's] style has not the terseness of many of our modem authors in mathematics, which is based on the assumption that printer's labor and paper are costly but the reader's effort and time are not. H. Weyl [143] The purpose of this book is to describe the classical problems in additive number theory and to introduce the circle method and the sieve method, which are the basic analytical and combinatorial tools used to attack these problems. This book is intended for students who want to lel?Ill additive number theory, not for experts who already know it. For this reason, proofs include many "e;unnecessary"e; and "e;obvious"e; steps; this is by design. The archetypical theorem in additive number theory is due to Lagrange: Every nonnegative integer is the sum of four squares. In general, the set A of nonnegative integers is called an additive basis of order h if every nonnegative integer can be written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem is the statement that the squares are a basis of order four. The set A is called a basis offinite order if A is a basis of order h for some positive integer h. Additive number theory is in large part the study of bases of finite order. The classical bases are the squares, cubes, and higher powers; the polygonal numbers; and the prime numbers. The classical questions associated with these bases are Waring's problem and the Goldbach conjecture.

  • von Raoul Bott
    57,00 €

    The guiding principle in this book is to use differential forms as an aid in exploring some of the less digestible aspects of algebraic topology. Accord- ingly, we move primarily in the realm of smooth manifolds and use the de Rham theory as a prototype of all of cohomology. For applications to homotopy theory we also discuss by way of analogy cohomology with arbitrary coefficients. Although we have in mind an audience with prior exposure to algebraic or differential topology, for the most part a good knowledge of linear algebra, advanced calculus, and point-set topology should suffice. Some acquaintance with manifolds, simplicial complexes, singular homology and cohomology, and homotopy groups is helpful, but not really necessary. Within the text itself we have stated with care the more advanced results that are needed, so that a mathematically mature reader who accepts these background materials on faith should be able to read the entire book with the minimal prerequisites. There are more materials here than can be reasonably covered in a one-semester course. Certain sections may be omitted at first reading with- out loss of continuity. We have indicated these in the schematic diagram that follows. This book is not intended to be foundational; rather, it is only meant to open some of the doors to the formidable edifice of modern algebraic topology. We offer it in the hope that such an informal account of the subject at a semi-introductory level fills a gap in the literature.

  • von E. T. Hecke
    67,00 - 68,00 €

    . . . if one wants to make progress in mathematics one should study the masters not the pupils. N. H. Abel Heeke was certainly one of the masters, and in fact, the study of Heeke L- series and Heeke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book, and Heeke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "e;To improve upon Heeke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task. "e; We have tried to remain as close as possible to the original text in pre- serving Heeke's rich, informal style of exposition. In a very few instances we have substituted modern terminology for Heeke's, e. g. , "e;torsion free group"e; for "e;pure group. "e; One problem for a student is the lack of exercises in the book. However, given the large number of texts available in algebraic number theory, this is not a serious drawback. In particular we recommend Number Fields by D. A. Marcus (Springer-Verlag) as a particularly rich source. We would like to thank James M. Vaughn Jr. and the Vaughn Foundation Fund for their encouragement and generous support of Jay R. Goldman without which this translation would never have appeared. Minneapolis George U. Brauer July 1981 Jay R.

  • von K. W. Gruenberg
    71,00 €

    This is essentially a book on linear algebra. But the approach is somewhat unusual in that we emphasise throughout the geometric aspect of the subject. The material is suitable for a course on linear algebra for mathe- matics majors at North American Universities in their junior or senior year and at British Universities in their second or third year. However, in view of the structure of undergraduate courses in the United States, it is very possible that, at many institutions, the text may be found more suitable at the beginning graduate level. The book has two aims: to provide a basic course in linear algebra up to, and including, modules over a principal ideal domain; and to explain in rigorous language the intuitively familiar concepts of euclidean, affine, and projective geometry and the relations between them. It is increasingly recognised that linear algebra should be approached from a geometric point of VIew. This applies not only to mathematics majors but also to mathematically-oriented natural scientists and engineers.

  • von Saunders Mac Lane
    53,00 €

    Categories for the Working Mathematician provides an array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. The book then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterized by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including two new chapters on topics of active interest. One is on symmetric monoidal categories and braided monoidal categories and the coherence theorems for them. The second describes 2-categories and the higher dimensional categories which have recently come into prominence. The bibliography has also been expanded to cover some of the many other recent advances concerning categories.

  • von Michael Rosen
    55,00 - 75,00 €

    Elementary number theory is concerned with the arithmetic properties of the ring of integers, Z, and its field of fractions, the rational numbers, Q. Early on in the development of the subject it was noticed that Z has many properties in common with A = IF[T], the ring of polynomials over a finite field. Both rings are principal ideal domains, both have the property that the residue class ring of any non-zero ideal is finite, both rings have infinitely many prime elements, and both rings have finitely many units. Thus, one is led to suspect that many results which hold for Z have analogues of the ring A. This is indeed the case. The first four chapters of this book are devoted to illustrating this by presenting, for example, analogues of the little theorems of Fermat and Euler, Wilson's theorem, quadratic (and higher) reciprocity, the prime number theorem, and Dirichlet's theorem on primes in an arithmetic progression. All these results have been known for a long time, but it is hard to locate any exposition of them outside of the original papers. Algebraic number theory arises from elementary number theory by con- sidering finite algebraic extensions K of Q, which are called algebraic num- ber fields, and investigating properties of the ring of algebraic integers OK C K, defined as the integral closure of Z in K.

  • von D. Winter
    63,00 €

  • von S. M. Srivastava
    75,00 €

    A Course on Borel sets provides a thorough introduction to Borel sets and measurable selections and acts as a stepping stone to descriptive set theory by presenting important techniques such as universal sets, prewellordering, scales, etc. It is well suited for graduate students exploring areas of mathematics for their research and for mathematicians requiring Borel sets and measurable selections in their work. It contains significant applications to other branches of mathematics and can serve as a self- contained reference accessible by mathematicians in many different disciplines. It is written in an easily understandable style and employs only naive set theory, general topology, analysis, and algebra. A large number of interesting exercises are given throughout the text.

  • von H. H. Schaefer
    93,00 €

    The present book is intended to be a systematic text on topological vector spaces and presupposes familiarity with the elements of general topology and linear algebra. The author has found it unnecessary to rederive these results, since they are equally basic for many other areas of mathematics, and every beginning graduate student is likely to have made their acquaintance. Simi­ larly, the elementary facts on Hilbert and Banach spaces are widely known and are not discussed in detail in this book, which is :plainly addressed to those readers who have attained and wish to get beyond the introductory level. The book has its origin in courses given by the author at Washington State University, the University of Michigan, and the University of Ttibingen in the years 1958-1963. At that time there existed no reasonably ccmplete text on topological vector spaces in English, and there seemed to be a genuine need for a book on this subject. This situation changed in 1963 with the appearance of the book by Kelley, Namioka et al. [1] which, through its many elegant proofs, has had some influence on the final draft of this manuscript. Yet the two books appear to be sufficiently different in spirit and subject matter to justify the publication of this manuscript; in particular, the present book includes a discussion of topological tensor products, nuclear spaces, ordered topological vector spaces, and an appendix on positive operators.

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.