Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Bücher der Reihe Progress in Probability

Filter
Filter
Ordnen nachSortieren Reihenfolge der Serie
  • von Yuri Kifer
    76,00 €

    Ergodic theory of dynamical systems i.e., the qualitative analysis of iterations of a single transformation is nowadays a well developed theory. In 1945 S. Ulam and J. von Neumann in their short note [44] suggested to study ergodic theorems for the more general situation when one applies in turn different transforma- tions chosen at random. Their program was fulfilled by S. Kakutani [23] in 1951. 'Both papers considered the case of transformations with a common invariant measure. Recently Ohno [38] noticed that this condition was excessive. Ergodic theorems are just the beginning of ergodic theory. Among further major developments are the notions of entropy and characteristic exponents. The purpose of this book is the study of the variety of ergodic theoretical properties of evolution processes generated by independent applications of transformations chosen at random from a certain class according to some probability distribution. The book exhibits the first systematic treatment of ergodic theory of random transformations i.e., an analysis of composed actions of independent random maps. This set up allows a unified approach to many problems of dynamical systems, products of random matrices and stochastic flows generated by stochastic differential equations.

  • von P. Bougerol
    85,00 €

    CHAPTER I THE DETERMINISTIC SCHRODINGER OPERATOR 187 1. The difference equation. Hyperbolic structures 187 2. Self adjointness of H. Spectral properties . 190 3. Slowly increasing generalized eigenfunctions 195 4. Approximations of the spectral measure 196 200 5. The pure point spectrum. A criterion 6. Singularity of the spectrum 202 CHAPTER II ERGODIC SCHRODINGER OPERATORS 205 1. Definition and examples 205 2. General spectral properties 206 3. The Lyapunov exponent in the general ergodie case 209 4. The Lyapunov exponent in the independent eas e 211 5. Absence of absolutely continuous spectrum 221 224 6. Distribution of states. Thouless formula 232 7. The pure point spectrum. Kotani's criterion 8. Asymptotic properties of the conductance in 234 the disordered wire CHAPTER III THE PURE POINT SPECTRUM 237 238 1. The pure point spectrum. First proof 240 2. The Laplace transform on SI(2,JR) 247 3. The pure point spectrum. Second proof 250 4. The density of states CHAPTER IV SCHRODINGER OPERATORS IN A STRIP 2';3 1. The deterministic Schrodinger operator in 253 a strip 259 2. Ergodie Schrodinger operators in a strip 3. Lyapunov exponents in the independent case. 262 The pure point spectrum (first proof) 267 4. The Laplace transform on Sp(~,JR) 272 5. The pure point spectrum, second proof vii APPENDIX 275 BIBLIOGRAPHY 277 viii PREFACE This book presents two elosely related series of leetures. Part A, due to P.

  • von Cinlar
    49,00 €

    This volume consists of about half of the papers presented during a three-day seminar on stochastic processes. The seminar was the third of such yearly seminars aimed at bringing together a small group of researchers to discuss their current work in an informal atmosphere. The previous two seminars were held at Northwesterr. University, Evanston. This one was held at the University of Florida, Gainesville. The invited participants in the seminar were B. ATKINSON, K.L. CHUNG, C. DELLACHERIE, J.L. DOOB, E.B. DYNKIN, N. FALKNER, R.K. GETOOR, J. GLOVER, T. JEULIN, H. KASPI, T. McCONNELL, J. MITRO, E. PERKINS, Z. POP-STOJANOVIC, M. RAO, L.C.G. ROGERS, P. SALMINEN, M.J. SHARPE, S.R.S. VARADHAN, and J. WALSH. We thank them and the other participants for the lively atmosphere they have created. The seminar was made possible through the generous supports of the University of Florida, Department of Mathematics, and the Air Force Office of Scientific Research, Grant No. 82-0189, to Northwestern University. We are grateful for their support. Finally, we thank Professors Zoran POP-STOJANOVIC and Murali RAO for their time, effort, and kind hospitality in the organization of the seminar and during our stay in Gainesville.

  • von Kesten
    81,00 €

    Quite apart from the fact that percolation theory had its orlgln in an honest applied problem (see Hammersley and Welsh (1980)), it is a source of fascinating problems of the best kind a mathematician can wish for: problems which are easy to state with a minimum of preparation, but whose solutions are (apparently) difficult and require new methods. At the same time many of the problems are of interest to or proposed by statistical physicists and not dreamt up merely to demons~te ingenuity. Progress in the field has been slow. Relatively few results have been established rigorously, despite the rapidly growing literature with variations and extensions of the basic model, conjectures, plausibility arguments and results of simulations. It is my aim to treat here some basic results with rigorous proofs. This is in the first place a research monograph, but there are few prerequisites; one term of any standard graduate course in probability should be more than enough. Much of the material is quite recent or new, and many of the proofs are still clumsy. Especially the attempt to give proofs valid for as many graphs as possible led to more complications than expected. I hope that the Applications and Examples provide justifi- cation for going to this level of generality.

  • - Centro Stefano Franscini, Ascona, May 2005
    von Robert Dalang
    140,00 €

    This volume contains refereed research or review papers presented at the 5th Seminar on Stochastic Processes, Random Fields and Applications, which took place at the Centro Stefano Franscini (Monte Verita) in Ascona, Switzerland, from May 29 to June 3, 2004. The seminar focused mainly on stochastic partial differential equations, stochastic models in mathematical physics, and financial engineering.

  • von E. Cinlar
    94,00 - 119,00 €

    The 1991 Seminar on Stochastic Processes was held at the University of California, Los Angeles, from March 23 through March 25, 1991. This was the eleventh in a series of annual meetings which provide researchers with the opportunity to discuss current work on stochastic processes in an informal and enjoyable atmosphere. Previous seminars were held at Northwestern University, Princeton University, the University of Florida, the University of Virginia, the University of California, San Diego, and the University of British Columbia. Following the successful format of previous years there were five invited lectures. These were given by M. Barlow, G. Lawler, P. March, D. Stroock, M. Talagrand. The enthusiasm and interest of the participants created a lively and stimulating atmosphere for the seminar. Some of the topics discussed are represented by the articles in this volume. P. J. Fitzsimmons T. M. Liggett S. C. Port Los Angeles, 1991 In Memory of Steven Orey M. CRANSTON The mathematical community has lost a cherished colleague with the passing of Steven Orey. This unique and thoughtful man has left those who knew him with many pleasant memories. He has also left us with important contributions in the development of the theory of Markov processes. As a friend and former student, I wish to take this chance to recall to those who know and introduce to those who do not a portion of his lifework.

  • von J. C. Watkins & K. S. Alexander
    94,00 €

  • von Steiger & P. Bloomfield
    50,00 €

  • von A. B. Cruzeiro & J. -C. Zambrini
    49,00 €

  • - Probability with a Physics Flavor
    von Vladas Sidoravicius
    50,00 €

    For more than two decades percolation theory, random walks, interacting parti- cle systems and topics related to statistical mechanics have experienced inten- sive growth. In the last several years, especially remarkable progress has been made in a number of directions, such as: Wulff constructions above two dimen- sions for percolation, Potts and Ising models, classification of random walks in random environments, better understanding of fluctuations in two dimen- sional growth processes, the introduction and remarkable uses of the Stochastic Loewner Equation, the rigorous derivation of exact intersection exponents for planar Brownian motion, and finally, the proof of conformal invariance for crit- ical percolation scaling limits on the triangular lattice. It was thus a fortuitous time to bring together researchers, including many personally responsible for these advances, in the framework of the IVth Brazilian School of Probability, held at Mambucaba on August 14-19,2000. This School, first envisioned and organized by IMPA's probability group in 1997, has since developed into an annual meeting with an almost constant format: it usually offers three advanced courses delivered by prominent scientists, combined with a high-level conference. This volume contains invited articles associated with that meeting, and we hope it will provide the reader with an accurate impression regarding the current state of affairs in these important fields of probability theory.

  • von Michael Hinz, Uta Freiberg, Steffen Winter & usw.
    151,00 €

  • von R. M. Dudley, J. Kuelbs & M. G. Hahn
    140,00 - 151,00 €

    Probability limit theorems in infinite-dimensional spaces give conditions un­ der which convergence holds uniformly over an infinite class of sets or functions. Early results in this direction were the Glivenko-Cantelli, Kolmogorov-Smirnov and Donsker theorems for empirical distribution functions. Already in these cases there is convergence in Banach spaces that are not only infinite-dimensional but nonsep­ arable. But the theory in such spaces developed slowly until the late 1970's. Meanwhile, work on probability in separable Banach spaces, in relation with the geometry of those spaces, began in the 1950's and developed strongly in the 1960's and 70's. We have in mind here also work on sample continuity and boundedness of Gaussian processes and random methods in harmonic analysis. By the mid-70's a substantial theory was in place, including sharp infinite-dimensional limit theorems under either metric entropy or geometric conditions. Then, modern empirical process theory began to develop, where the collection of half-lines in the line has been replaced by much more general collections of sets in and functions on multidimensional spaces. Many of the main ideas from probability in separable Banach spaces turned out to have one or more useful analogues for empirical processes. Tightness became "asymptotic equicontinuity. " Metric entropy remained useful but also was adapted to metric entropy with bracketing, random entropies, and Kolchinskii-Pollard entropy. Even norms themselves were in some situations replaced by measurable majorants, to which the well-developed separable theory then carried over straightforwardly.

  • von Ramsés H. Mena, Daniel Hernández¿Hernández, Juan Carlos Pardo Millán & usw.
    148,00 €

  •  
    132,00 €

    This is a volume in memory of Vladas Sidoravicius who passed away in 2019. Vladas has edited two volumes appeared in this series ("In and Out of Equilibrium") and is now honored by friends and colleagues with research papers reflecting Vladas' interests and contributions to probability theory.

  • von Nathael Gozlan, Rados¿aw Adamczak, Mokshay Madiman & usw.
    158,00 €

    This volume collects selected papers from the Ninth High Dimensional Probability Conference, held virtually from June 15-19, 2020. These papers cover a wide range of topics and demonstrate how high-dimensional probability remains an active area of research with applications across many mathematical disciplines. Chapters are organized around four general topics: inequalities and convexity; limit theorems; stochastic processes; and high-dimensional statistics. High Dimensional Probability IX will be a valuable resource for researchers in this area.

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.