Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Bücher der Reihe Springer Texts in Statistics

Filter
Filter
Ordnen nachSortieren Reihenfolge der Serie
  • 12% sparen
    von Bernard Flury
    80,00 €

    My goal in writing this book has been to provide teachers and students of multi­ variate statistics with a unified treatment ofboth theoretical and practical aspects of this fascinating area. The text is designed for a broad readership, including advanced undergraduate students and graduate students in statistics, graduate students in bi­ ology, anthropology, life sciences, and other areas, and postgraduate students. The style of this book reflects my beliefthat the common distinction between multivariate statistical theory and multivariate methods is artificial and should be abandoned. I hope that readers who are mostly interested in practical applications will find the theory accessible and interesting. Similarly I hope to show to more mathematically interested students that multivariate statistical modelling is much more than applying formulas to data sets. The text covers mostly parametric models, but gives brief introductions to computer-intensive methods such as the bootstrap and randomization tests as well. The selection of material reflects my own preferences and views. My principle in writing this text has been to restrict the presentation to relatively few topics, but cover these in detail. This should allow the student to study an area deeply enough to feel comfortable with it, and to start reading more advanced books or articles on the same topic.

  • 10% sparen
    von George R. Terrell
    48,00 €

  • 12% sparen
  • von E. L. Lehmann
    93,00 €

    Elements of Large-Sample Theory provides a unified treatment of first- order large-sample theory. It discusses a broad range of applications including introductions to density estimation, the bootstrap, and the asymptotics of survey methodology. The book is written at an elementary level and is suitable for students at the master's level in statistics and in aplied fields who have a background of two years of calculus.E.L. Lehmann is Professor of Statistics Emeritus at the University of California, Berkeley. He is a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and the recipient of honorary degrees from the University of Leiden, The Netherlands, and the University of Chicago. Also available: Lehmann/Casella, Theory at Point Estimation, 2nd ed. Springer-Verlag New York, Inc., 1998, ISBN 0- 387-98502-6Lehmann, Testing Statistical Hypotheses, 2nd ed. Springer-Verlag New York, Inc., 1997, ISBN 0-387-94919-4

  • von Glen McPherson
    49,00 €

  • von Gareth James
    59,00 €

  • 12% sparen
    von Kostas Triantafyllopoulos
    75,00 €

  • 13% sparen
    von Johannes Lederer
    79,00 €

  • 13% sparen
    von Krishna B. Athreya & Soumendra N. Lahiri
    84,00 - 120,00 €

  • 12% sparen
    - Regression, Classification, and Manifold Learning
    von Alan J. Izenman
    80,00 - 111,00 €

    This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.

  • von Jiming Jiang
    67,00 €

  • von Silvia Bozza
    39,00 €

    Bayes Factors for Forensic Decision Analyses with R provides a self-contained introduction to computational Bayesian statistics using R. With its primary focus on Bayes factors supported by data sets, this book features an operational perspective, practical relevance, and applicability¿keeping theoretical and philosophical justifications limited. It offers a balanced approach to three naturally interrelated topics:Probabilistic Inference - Relies on the core concept of Bayesian inferential statistics, to help practicing forensic scientists in the logical and balanced evaluation of the weight of evidence.Decision Making - Features how Bayes factors are interpreted in practical applications to help address questions of decision analysis involving the use of forensic science in the law.Operational Relevance - Combines inference and decision, backed up with practical examples and complete sample code in R, including sensitivity analyses and discussion on how to interpret results in context.Over the past decades, probabilistic methods have established a firm position as a reference approach for the management of uncertainty in virtually all areas of science, including forensic science, with Bayes' theorem providing the fundamental logical tenet for assessing how new information¿scientific evidence¿ought to be weighed. Central to this approach is the Bayes factor, which clarifies the evidential meaning of new information, by providing a measure of the change in the odds in favor of a proposition of interest, when going from the prior to the posterior distribution. Bayes factors should guide the scientist's thinking about the value of scientific evidence and form the basis of logical and balanced reporting practices, thus representing essential foundations for rational decision making under uncertainty.This book would be relevant to students, practitioners, and applied statisticiansinterested in inference and decision analyses in the critical field of forensic science. It could be used to support practical courses on Bayesian statistics and decision theory at both undergraduate and graduate levels, and will be of equal interest to forensic scientists and practitioners of Bayesian statistics for driving their evaluations and the use of R for their purposes.This book is Open Access.

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.