Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Bücher der Reihe Undergraduate Texts in Mathematics

Filter
Filter
Ordnen nachSortieren Reihenfolge der Serie
  • von Sidney A. Morris
    53,00 - 54,00 €

    The famous problems of squaring the circle, doubling the cube and trisecting an angle captured the imagination of both professional and amateur mathematicians for over two thousand years. Despite the enormous effort and ingenious attempts by these men and women, the problems would not yield to purely geometrical methods. It was only the development. of abstract algebra in the nineteenth century which enabled mathematicians to arrive at the surprising conclusion that these constructions are not possible. In this book we develop enough abstract algebra to prove that these constructions are impossible. Our approach introduces all the relevant concepts about fields in a way which is more concrete than usual and which avoids the use of quotient structures (and even of the Euclidean algorithm for finding the greatest common divisor of two polynomials). Having the geometrical questions as a specific goal provides motivation for the introduction of the algebraic concepts and we have found that students respond very favourably. We have used this text to teach second-year students at La Trobe University over a period of many years, each time refining the material in the light of student performance.

  • von Gabor Toth
    45,00 €

  • von P. R. Halmos
    75,00 €

    Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic set- theoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here. Scholarly bibliographical credits and references are out of place in a purely expository book such as this one. The student who gets interested in set theory for its own sake should know, however, that there is much more to the subject than there is in this book. One of the most beautiful sources of set-theoretic wisdom is still Hausdorff's Set theory. A recent and highly readable addition to the literature, with an extensive and up-to-date bibliography, is Axiomatic set theory by Suppes.

  • von Gabor Toth
    51,00 - 71,00 €

    Previous edition sold 2000 copies in 3 years; Explores the subtle connections between Number Theory, Classical Geometry and Modern Algebra; Over 180 illustrations, as well as text and Maple files, are available via the web facilitate understanding: http://mathsgi01.rutgers.edu/cgi-bin/wrap/gtoth/; Contains an insert with 4-color illustrations; Includes numerous examples and worked-out problems

  • von P. R. Halmos & Steven Givant
    63,00 €

  • von Kai Lai Chung & Farid Aitsahlia
    51,00 €

  • von John Stillwell
    45,00 €

  • von Serge Lang
    54,00 €

    This book, together with Linear Algebra, constitutes a curriculum for an algebra program addressed to undergraduates. The separation of the linear algebra from the other basic algebraic structures fits all existing tendencies affecting undergraduate teaching, and I agree with these tendencies. I have made the present book self contained logically, but it is probably better if students take the linear algebra course before being introduced to the more abstract notions of groups, rings, and fields, and the systematic development of their basic abstract properties. There is of course a little overlap with the book Lin- ear Algebra, since I wanted to make the present book self contained. I define vector spaces, matrices, and linear maps and prove their basic properties. The present book could be used for a one-term course, or a year's course, possibly combining it with Linear Algebra. I think it is important to do the field theory and the Galois theory, more important, say, than to do much more group theory than we have done here. There is a chapter on finite fields, which exhibit both features from general field theory, and special features due to characteristic p. Such fields have become important in coding theory.

  • von Peter Hilton, Derek Holton & Jean Pedersen
    45,00 - 50,00 €

  • von Mark A. Armstrong
    45,00 €

  • von J. Dixmier
    49,00 €

  • von Serge Lang
    44,00 €

    "e;Linear Algebra"e; is intended for a one-term course at the junior or senior level. It begins with an exposition of the basic theory of vector spaces and proceeds to explain the fundamental structure theorem for linear maps, including eigenvectors and eigenvalues, quadratic and hermitian forms, diagnolization of symmetric, hermitian, and unitary linear maps and matrices, triangulation, and Jordan canonical form. The book also includes a useful chapter on convex sets and the finite-dimensional Krein-Milman theorem. The presentation is aimed at the student who has already had some exposure to the elementary theory of matrices, determinants and linear maps. However the book is logically self-contained. In this new edition, many parts of the book have been rewritten and reorganized, and new exercises have been added.

  • von M. A. Armstrong
    49,00 €

    In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for calculating them. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties will help students gain a rounded understanding of the subject.

  • - A Concrete Introduction to Algebraic Curves
    von Robert Bix
    45,00 €

    Algebraic curves are the graphs of polynomial equations in two vari- 3 ables, such as y3 + 5xy2 = x + 2xy. By focusing on curves of degree at most 3-lines, conics, and cubics-this book aims to fill the gap between the familiar subject of analytic geometry and the general study of alge- braic curves. This text is designed for a one-semester class that serves both as a a geometry course for mathematics majors in general and as a sequel to college geometry for teachers of secondary school mathe- matics. The only prerequisite is first-year calculus. On the one hand, this book can serve as a text for an undergraduate geometry course for all mathematics majors. Algebraic geometry unites algebra, geometry, topology, and analysis, and it is one of the most exciting areas of modem mathematics. Unfortunately, the subject is not easily accessible, and most introductory courses require a prohibitive amount of mathematical machinery. We avoid this problem by focusing on curves of degree at most 3. This keeps the results tangible and the proofs natural. It lets us emphasize the power of two fundamental ideas, homogeneous coordinates and intersection multiplicities.

  • von Rudolf Lidl & Günter Pilz
    45,00 - 70,00 €

    Accessible to junior and senior undergraduate students, this survey contains many examples, solved exercises, sets of problems, and parts of abstract algebra of use in many other areas of discrete mathematics. Although this is a mathematics book, the authors have made great efforts to address the needs of users employing the techniques discussed. Fully worked out computational examples are backed by more than 500 exercises throughout the 40 sections. This new edition includes a new chapter on cryptology, and an enlarged chapter on applications of groups, while an extensive chapter has been added to survey other applications not included in the first edition. The book assumes knowledge of the material covered in a course on linear algebra and, preferably, a first course in (abstract) algebra covering the basics of groups, rings, and fields.

  • von Donald Estep
    54,00 - 67,00 €

  • von George E. Martin
    50,00 - 70,00 €

  • von John Stillwell
    36,00 €

    Many people think there is only one ¿right¿ way to teach geometry. For two millennia, the ¿right¿ way was Euclid¿s way, and it is still good in many respects. But in the 1950s the cry ¿Down with triangles!¿ was heard in France and new geometry books appeared, packed with linear algebra but with no diagrams. Was this the new ¿right¿ way, or was the ¿right¿ way something else again, perhaps transformation groups? In this book, I wish to show that geometry can be developed in four fundamentally different ways, and that all should be used if the subject is to be shown in all its splendor. Euclid-style construction and axiomatics seem the best way to start, but linear algebra smooths the later stages by replacing some tortuous arguments by simple calculations. And how can one avoid projective geometry? It not only explains why objects look the way they do; it also explains why geometry is entangled with algebra. Finally, one needs to know that there is not one geometry, but many, and transformation groups are the best way to distinguish between them. Two chapters are devoted to each approach: The ?rst is concrete and introductory, whereas the second is more abstract. Thus, the ?rst chapter on Euclid is about straightedge and compass constructions; the second is about axioms and theorems. The ?rst chapter on linear algebra is about coordinates; the second is about vector spaces and the inner product.

  • von Sudhir R. Ghorpade & Balmohan V. Limaye
    54,00 €

    Offering a unified exposition of calculus and classical real analysis, this textbook presents a meticulous introduction to single¿variable calculus. Throughout, the exposition makes a distinction between the intrinsic geometric definition of a notion and its analytic characterization, establishing firm foundations for topics often encountered earlier without proof. Each chapter contains numerous examples and a large selection of exercises, as well as a ¿Notes and Comments¿ section, which highlights distinctive features of the exposition and provides additional references to relevant literature.This second edition contains substantial revisions and additions, including several simplified proofs, new sections, and new and revised figures and exercises. A new chapter discusses sequences and series of real¿valued functions of a real variable, and their continuous counterpart: improper integrals depending on a parameter. Two new appendices cover a construction of the real numbers using Cauchy sequences, and a self¿contained proof of the Fundamental Theorem of Algebra.In addition to the usual prerequisites for a first course in single¿variable calculus, the reader should possess some mathematical maturity and an ability to understand and appreciate proofs. This textbook can be used for a rigorous undergraduate course in calculus, or as a supplement to a later course in real analysis. The authors¿ A Course in Multivariable Calculus is an ideal companion volume, offering a natural extension of the approach developed here to the multivariable setting.From reviews:[The first edition is] a rigorous, well-presented and original introduction to the core of undergraduate mathematics ¿ first-year calculus. It develops this subject carefully from a foundation of high-school algebra, with interesting improvements and insights rarely found in other books. [¿] This book is a tour de force, and a necessary addition to the library of anyone involved in teaching calculus, or studying it seriously. N.J. Wildberger, Aust. Math. Soc. Gaz.

  • von Gerald Edgar
    37,00 €

    From reviews of the first edition:"e;In the world of mathematics, the 1980's might well be described as the "e;decade of the fractal"e;. Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology...the book also contains many good illustrations of fractals (including 16 color plates)."e;Mathematics Teaching"e;The book can be recommended to students who seriously want to know about the mathematical foundation of fractals, and to lecturers who want to illustrate a standard course in metric topology by interesting examples."e;Christoph Bandt, Mathematical Reviews"e;...not only intended to fit mathematics students who wish to learn fractal geometry from its beginning but also students in computer science who are interested in the subject. Especially, for the last students the author gives the required topics from metric topology and measure theory on an elementary level. The book is written in a very clear style and contains a lot of exercises which should be worked out."e;H.Haase, ZentralblattAbout the second edition: Changes throughout the text, taking into account developments in the subject matter since 1990; Major changes in chapter 6. Since 1990 it has become clear that there are two notions of dimension that play complementary roles, so the emphasis on Hausdorff dimension will be replaced by the two: Hausdorff dimension and packing dimension. 6.1 will remain, but a new section on packing dimension will follow it, then the old sections 6.2--6.4 will be re-written to show both types of dimension; Substantial change in chapter 7: new examples along with recent developments; Sections rewritten to be made clearer and more focused.

  • von Peter Petersen
    54,00 €

  • von Michael W. Frazier
    54,00 €

    Mathematics majors at Michigan State University take a ¿Capstone¿ course near the end of their undergraduate careers. The content of this course varies with each offering. Its purpose is to bring together different topics from the undergraduate curriculum and introduce students to a developing area in mathematics. This text was originally written for a Capstone course. Basicwavelettheoryisanaturaltopicforsuchacourse. Byname, wavelets date back only to the 1980s. On the boundary between mathematics and engineering, wavelet theory shows students that mathematics research is still thriving, with important applications in areas such as image compression and the numerical solution of differential equations. The author believes that the essentials of wavelet theory are suf?ciently elementary to be taught successfully to advanced undergraduates. This text is intended for undergraduates, so only a basic background in linear algebra and analysis is assumed. We do not require familiarity with complex numbers and the roots of unity. These are introduced in the ?rst two sections of chapter 1. In the remainder of chapter 1 we review linear algebra. Students should be familiar with the basic de?nitions in sections 1. 3 and 1. 4. From our viewpoint, linear transformations are the primary object of study; v Preface vi a matrix arises as a realization of a linear transformation. Many students may have been exposed to the material on change of basis in section 1. 4, but may bene?t from seeing it again. In section 1.

  • von Murray H. Protter
    45,00 €

  • von L. R. Foulds
    59,00 €

  • von Jerome Malitz
    47,00 €

    This book is intended as an undergraduate senior level or beginning graduate level text for mathematical logic. There are virtually no prere- quisites, although a familiarity with notions encountered in a beginning course in abstract algebra such as groups, rings, and fields will be useful in providing some motivation for the topics in Part III. An attempt has been made to develop the beginning of each part slowly and then to gradually quicken the pace and the complexity of the material. Each part ends with a brief introduction to selected topics of current interest. The text is divided into three parts: one dealing with set theory, another with computable function theory, and the last with model theory. Part III relies heavily on the notation, concepts and results discussed in Part I and to some extent on Part II. Parts I and II are independent of each other, and each provides enough material for a one semester course. The exercises cover a wide range of difficulty with an emphasis on more routine problems in the earlier sections of each part in order to familiarize the reader with the new notions and methods. The more difficult exercises are accompanied by hints. In some cases significant theorems are devel- oped step by step with hints in the problems. Such theorems are not used later in the sequence.

  • von G. Whyburn & E. Duda
    46,00 €

    It is a privilege for me to write a foreword for this unusual book. The book is not primarily a reference work although many of the ideas and proofs are explained more clearly here than in any other source that I know. Nor is this a text of the customary sort. It is rather a record of a particular course and Gordon Whyburn's special method of teaching it. Perhaps the easiest way to describe the course and the method is to relate my own personal experience with a forerunner of this same course in the academic year 1937-1938. At that time, the course was offered every other year with a following course in algebraic topology on alternate years. There were five of us enrolled, and on the average we knew less mathematics than is now routinely given in a junior course in analysis. Whyburn's purpose, as we learned, was to prepare us in minimal time for research in the areas in which he was inter- ested. His method was remarkable.

  • von W. Prenowitz & J. Jantosciak
    45,00 €

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.