Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Algorithmus für künstliche neuronale Netze zur Diagnose von Haarausfall beim Menschen

Über Algorithmus für künstliche neuronale Netze zur Diagnose von Haarausfall beim Menschen

In diesem Buch werden künstliche neuronale Netze (ANNs) zur Diagnose von Haarausfall bei Patienten eingesetzt. Eine Autoimmunerkrankung, die als Alopecia Areata (AA) bekannt ist, führt zu Haarausfall in den betroffenen Bereichen. Die neuesten Zahlen aus der ganzen Welt zeigen, dass AA bei 1 von 1000 Personen auftritt und eine Inzidenzrate von 2 % hat. Die Klassifizierung ist zum Beispiel in der Medizin wichtig, da eines der Hauptziele des Arztes darin besteht, festzustellen, ob ein Patient an einer Krankheit leidet oder nicht. Ziel dieser Studie ist es, die Genauigkeit neuronaler Netze bei der Erkennung von Alopezie bei menschlichen Probanden zu bewerten. Gesunde Haare (HHs) und Alopecia Areata (AA) haben einen IA-Klassifizierungsrahmen, der einer IP unterzogen wird, einschließlich CLAHE-Erweiterung und Segmentierung. Um die Präzision des vorgeschlagenen Rahmens zu erhöhen, wurde eine Datenerweiterung (DA) eingesetzt, um weitere Daten zu generieren. Das vortrainierte VGG-19-CNN-Modell wurde dann zur Extraktion von Merkmalen verwendet. Um ein maschinelles Lernmodell zu erstellen, wurde der Klassifizierungsansatz der Support Vector Machine (SVM) verwendet. Die restlichen Bilder der Serie wurden zum Testen verwendet. Die vorgeschlagene VGG-SVM erwies sich in der Simulation als 98,31 % genau.

Mehr anzeigen
  • Sprache:
  • Deutsch
  • ISBN:
  • 9786205686423
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 164
  • Veröffentlicht:
  • 9. Februar 2023
  • Abmessungen:
  • 150x10x220 mm.
  • Gewicht:
  • 262 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Algorithmus für künstliche neuronale Netze zur Diagnose von Haarausfall beim Menschen

In diesem Buch werden künstliche neuronale Netze (ANNs) zur Diagnose von Haarausfall bei Patienten eingesetzt. Eine Autoimmunerkrankung, die als Alopecia Areata (AA) bekannt ist, führt zu Haarausfall in den betroffenen Bereichen. Die neuesten Zahlen aus der ganzen Welt zeigen, dass AA bei 1 von 1000 Personen auftritt und eine Inzidenzrate von 2 % hat. Die Klassifizierung ist zum Beispiel in der Medizin wichtig, da eines der Hauptziele des Arztes darin besteht, festzustellen, ob ein Patient an einer Krankheit leidet oder nicht. Ziel dieser Studie ist es, die Genauigkeit neuronaler Netze bei der Erkennung von Alopezie bei menschlichen Probanden zu bewerten. Gesunde Haare (HHs) und Alopecia Areata (AA) haben einen IA-Klassifizierungsrahmen, der einer IP unterzogen wird, einschließlich CLAHE-Erweiterung und Segmentierung. Um die Präzision des vorgeschlagenen Rahmens zu erhöhen, wurde eine Datenerweiterung (DA) eingesetzt, um weitere Daten zu generieren. Das vortrainierte VGG-19-CNN-Modell wurde dann zur Extraktion von Merkmalen verwendet. Um ein maschinelles Lernmodell zu erstellen, wurde der Klassifizierungsansatz der Support Vector Machine (SVM) verwendet. Die restlichen Bilder der Serie wurden zum Testen verwendet. Die vorgeschlagene VGG-SVM erwies sich in der Simulation als 98,31 % genau.

Kund*innenbewertungen von Algorithmus für künstliche neuronale Netze zur Diagnose von Haarausfall beim Menschen



Ähnliche Bücher finden
Das Buch Algorithmus für künstliche neuronale Netze zur Diagnose von Haarausfall beim Menschen ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.