Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Design of a Self-Powered Energy Management Circuit for Piezoelectric Energy Harvesting based on Synchronized Switching Technology

Über Design of a Self-Powered Energy Management Circuit for Piezoelectric Energy Harvesting based on Synchronized Switching Technology

Vibration converters based on piezoelectric materials are currently becoming increasingly important for powering low-power wireless sensor nodes and wearable electronic devices. Piezoelectric materials generate variable electrical charges under mechanical stress, requiring an energy management interface to meet load requirements. Resonant interfaces like Parallel Synchronized Switch Harvesting on Inductor (P-SSHI) are highly efficient and robust to energy sources and loads variations. Nevertheless, SSHI circuits require synchronous switch control for efficient energy transfer. At irregular excitation, SSHI circuits may not perform optimally because the resonant frequency of the circuit is typically tuned to match the frequency of the energy source, which in the case of footsteps can be irregular and unpredictable. In addition, the circuit may also be susceptible to noise and interference from irregular excitations, which can further affect its performance. The aim is to design a self-powered energy management solution that can operate autonomously even at low frequencies and for irregular chock excitations, while at the same time allowing higher energy flow to the energy storage device and maintaining high levels of energy efficiency. To evaluate the performance of the proposed circuit, a piezoelectric shoe insole is designed and used for testing with different storage capacitance values and loads as a proof of the circuit's adaptability to various loading conditions.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783961001972
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 148
  • Veröffentlicht:
  • 22. Januar 2024
  • Abmessungen:
  • 148x10x210 mm.
  • Gewicht:
  • 225 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.
Verlängerte Rückgabefrist bis 31. Januar 2025
  •  

    Keine Lieferung vor Weihnachten möglich.
    Kaufen Sie jetzt und drucken Sie einen Gutschein aus

Beschreibung von Design of a Self-Powered Energy Management Circuit for Piezoelectric Energy Harvesting based on Synchronized Switching Technology

Vibration converters based on piezoelectric materials are currently becoming increasingly important for powering low-power wireless sensor nodes and wearable electronic devices. Piezoelectric materials generate variable electrical charges under mechanical stress, requiring an energy management interface to meet load requirements. Resonant interfaces like Parallel Synchronized Switch Harvesting on Inductor (P-SSHI) are highly efficient and robust to energy sources and loads variations. Nevertheless, SSHI circuits require synchronous switch control for efficient energy transfer. At irregular excitation, SSHI circuits may not perform optimally because the resonant frequency of the circuit is typically tuned to match the frequency of the energy source, which in the case of footsteps can be irregular and unpredictable. In addition, the circuit may also be susceptible to noise and interference from irregular excitations, which can further affect its performance. The aim is to design a self-powered energy management solution that can operate autonomously even at low frequencies and for irregular chock excitations, while at the same time allowing higher energy flow to the energy storage device and maintaining high levels of energy efficiency. To evaluate the performance of the proposed circuit, a piezoelectric shoe insole is designed and used for testing with different storage capacitance values and loads as a proof of the circuit's adaptability to various loading conditions.

Kund*innenbewertungen von Design of a Self-Powered Energy Management Circuit for Piezoelectric Energy Harvesting based on Synchronized Switching Technology



Ähnliche Bücher finden
Das Buch Design of a Self-Powered Energy Management Circuit for Piezoelectric Energy Harvesting based on Synchronized Switching Technology ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.