Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Development and Analysis of non-standard Echo State Networks

Über Development and Analysis of non-standard Echo State Networks

In an era of complex deep learning architectures like transformers, CNNs, and LSTM cells, the challenge persists: the hunger for labeled data and high energy. This dissertation explores Echo State Network (ESN), an RNN variant. ESN's efficiency in linear regression training and simplicity suggest pathways to resource-efficient, adaptable deep learning. Systematically deconstructing ESN architecture into flexible modules, it introduces basic ESN models with random weights and efficient deterministic ESN models as baselines. Diverse unsupervised pre-training methods for ESN components are evaluated against these baselines. Rigorous benchmarking across datasets - time-series classification, audio recognition - shows competitive performance of ESN models with state-of-the-art approaches. Identified nuanced use cases guiding model preferences and limitations in training methods highlight the importance of proposed ESN models in bridging reservoir computing and deep learning.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783959086486
  • Einband:
  • Gebundene Ausgabe
  • Seitenzahl:
  • 196
  • Veröffentlicht:
  • 15. Februar 2024
  • Abmessungen:
  • 170x16x240 mm.
  • Gewicht:
  • 435 g.
  Versandkostenfrei
  Sofort lieferbar

Beschreibung von Development and Analysis of non-standard Echo State Networks

In an era of complex deep learning architectures like transformers, CNNs, and LSTM cells, the challenge persists: the hunger for labeled data and high energy. This dissertation explores Echo State Network (ESN), an RNN variant. ESN's efficiency in linear regression training and simplicity suggest pathways to resource-efficient, adaptable deep learning. Systematically deconstructing ESN architecture into flexible modules, it introduces basic ESN models with random weights and efficient deterministic ESN models as baselines. Diverse unsupervised pre-training methods for ESN components are evaluated against these baselines. Rigorous benchmarking across datasets - time-series classification, audio recognition - shows competitive performance of ESN models with state-of-the-art approaches. Identified nuanced use cases guiding model preferences and limitations in training methods highlight the importance of proposed ESN models in bridging reservoir computing and deep learning.

Kund*innenbewertungen von Development and Analysis of non-standard Echo State Networks



Ähnliche Bücher finden
Das Buch Development and Analysis of non-standard Echo State Networks ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.