Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL
Über Differenzierbare Raume

Der Begriff des differenzierbaren Raumes wurde von K. SPALLEK in [11] eingeführt. Es handelt sich dabei um eine Verallgemeinerung des Begriffs der differenzierbaren Mannig­ faltigkeit, ähnlich wie komplexe Mannigfaltigkeiten durch komplexe Räume verall­ gemeinert werden. Ferner besteht eine Verbindung zur Funktionentheorie dadurch, daß sich jeder komplexe Raum in natürlicher Weise als differenzierbarer Raum auffassen läßt. Dadurch lassen sich gewisse Ergebnisse aus der Theorie der differenzierbaren Räume auf komplexe Räume anwenden. Ein Paar D = (X, d) heißt k-differenzierbarer Unterraum des IRn, wenn Xc IRn eine Teilmenge ist und d eine Garbe über X, die dadurch entsteht, daß man die Garbe ~k der Keime von Ck-Funktionen im IRn auf X einschränkt und dann durch eine Idealuntergarbe ß dividiert, die folgende Eigenschaften hat: a) ßx=l=~~, b) ß ' ~~-1 n ~~ = ß (für alle x EX). x x (Die Bedingung b) muß aus gewissen beweistechnischen Gründen gefordert werden und ist in vielen Fällen von selbst erfüllt.) Sind D = (X, d) und D' = (X', d') k-differenzierbarer Unterräume des IRn bzw.

Mehr anzeigen
  • Sprache:
  • Deutsch
  • ISBN:
  • 9783663062417
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 40
  • Veröffentlicht:
  • 1. Januar 1970
  • Ausgabe:
  • 1970
  • Abmessungen:
  • 244x170x2 mm.
  • Gewicht:
  • 86 g.
  Versandkostenfrei
  Sofort lieferbar

Beschreibung von Differenzierbare Raume

Der Begriff des differenzierbaren Raumes wurde von K. SPALLEK in [11] eingeführt. Es handelt sich dabei um eine Verallgemeinerung des Begriffs der differenzierbaren Mannig­ faltigkeit, ähnlich wie komplexe Mannigfaltigkeiten durch komplexe Räume verall­ gemeinert werden. Ferner besteht eine Verbindung zur Funktionentheorie dadurch, daß sich jeder komplexe Raum in natürlicher Weise als differenzierbarer Raum auffassen läßt. Dadurch lassen sich gewisse Ergebnisse aus der Theorie der differenzierbaren Räume auf komplexe Räume anwenden. Ein Paar D = (X, d) heißt k-differenzierbarer Unterraum des IRn, wenn Xc IRn eine Teilmenge ist und d eine Garbe über X, die dadurch entsteht, daß man die Garbe ~k der Keime von Ck-Funktionen im IRn auf X einschränkt und dann durch eine Idealuntergarbe ß dividiert, die folgende Eigenschaften hat: a) ßx=l=~~, b) ß ' ~~-1 n ~~ = ß (für alle x EX). x x (Die Bedingung b) muß aus gewissen beweistechnischen Gründen gefordert werden und ist in vielen Fällen von selbst erfüllt.) Sind D = (X, d) und D' = (X', d') k-differenzierbarer Unterräume des IRn bzw.

Kund*innenbewertungen von Differenzierbare Raume



Ähnliche Bücher finden
Das Buch Differenzierbare Raume ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.