Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Estimation de l'indice de queue lourde sous censure aléatoire

Über Estimation de l'indice de queue lourde sous censure aléatoire

Le livre focalise sur l¿estimation de l¿indice de queue d'une distribution à queues lourdes avec des données complètes et incomplètes. Ce qui nous amène à l¿estimation de la distribution des extrêmes (EVT), qui repose donc sur l¿estimation de l¿indice des valeurs extrêmes (EVI) ¿. Parmi les plus importants on peut citer l¿estimateur de Hill généralisé (G-Hill) et l¿estimateur du maximum de vraisemblance (ML), car G-Hill est asymptotiquement sans biais. Et ML est un estimateur consistant avec un faible biais. La plupart des recherches en EVT se concentrent sur les distributions à queues lourdes où le EVI ¿> 0: C¿est le domaine sur lequel nous allons nous concentrer. Nous supposerons le cas de la censure aléatoire (c.a), et consacrerons notre attention à l¿estimation d¿EVI sous c.a. En 2008, Einmahl et al [11] ont fourni une définition par laquelle nous pouvons adapter n'importe quel estimateur d¿EVI classique sous c.a, parmi eux ML. Dans notre travail, nous présenterons une méthode numérique pour estimer l¿EVI sous c.a, nous verrons qüil n¿est pas possible d¿adapter ML sous c.a par la définition donnée par [11]. Cela est expliqué par Kouider et al [28] (2003).

Mehr anzeigen
  • Sprache:
  • Französisch
  • ISBN:
  • 9786206702924
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 144
  • Veröffentlicht:
  • 18. Januar 2024
  • Abmessungen:
  • 150x9x220 mm.
  • Gewicht:
  • 233 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Estimation de l'indice de queue lourde sous censure aléatoire

Le livre focalise sur l¿estimation de l¿indice de queue d'une distribution à queues lourdes avec des données complètes et incomplètes. Ce qui nous amène à l¿estimation de la distribution des extrêmes (EVT), qui repose donc sur l¿estimation de l¿indice des valeurs extrêmes (EVI) ¿. Parmi les plus importants on peut citer l¿estimateur de Hill généralisé (G-Hill) et l¿estimateur du maximum de vraisemblance (ML), car G-Hill est asymptotiquement sans biais. Et ML est un estimateur consistant avec un faible biais. La plupart des recherches en EVT se concentrent sur les distributions à queues lourdes où le EVI ¿> 0: C¿est le domaine sur lequel nous allons nous concentrer. Nous supposerons le cas de la censure aléatoire (c.a), et consacrerons notre attention à l¿estimation d¿EVI sous c.a. En 2008, Einmahl et al [11] ont fourni une définition par laquelle nous pouvons adapter n'importe quel estimateur d¿EVI classique sous c.a, parmi eux ML. Dans notre travail, nous présenterons une méthode numérique pour estimer l¿EVI sous c.a, nous verrons qüil n¿est pas possible d¿adapter ML sous c.a par la définition donnée par [11]. Cela est expliqué par Kouider et al [28] (2003).

Kund*innenbewertungen von Estimation de l'indice de queue lourde sous censure aléatoire



Ähnliche Bücher finden
Das Buch Estimation de l'indice de queue lourde sous censure aléatoire ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.