Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Introduction to the Geometry of Foliations, Part A

- Foliations on Compact Surfaces, Fundamentals for Arbitrary Codimension, and Holonomy

Über Introduction to the Geometry of Foliations, Part A

Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pioneer work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and IV. Kaplan - to name a few - who all studied "regular curve families" on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and otners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. ~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and cnaracteristic classes) on the one hand, and the qualitative or geometrie theory on the other. The present volume is the first part of a monograph on geometrie aspects of foliations. Our intention here is to present some fundamental concepts and results as weIl as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that tilis goal has been achieved.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783528185015
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 236
  • Veröffentlicht:
  • 1. Januar 1986
  • Ausgabe:
  • 21986
  • Abmessungen:
  • 230x170x13 mm.
  • Gewicht:
  • 442 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Introduction to the Geometry of Foliations, Part A

Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pioneer work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and IV. Kaplan - to name a few - who all studied "regular curve families" on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and otners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. ~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and cnaracteristic classes) on the one hand, and the qualitative or geometrie theory on the other. The present volume is the first part of a monograph on geometrie aspects of foliations. Our intention here is to present some fundamental concepts and results as weIl as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that tilis goal has been achieved.

Kund*innenbewertungen von Introduction to the Geometry of Foliations, Part A



Ähnliche Bücher finden
Das Buch Introduction to the Geometry of Foliations, Part A ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.