Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

K-means Clustering Algorithm: Implementation and Critical Analysis

K-means Clustering Algorithm: Implementation and Critical Analysisvon Swati Patel Sie sparen 15% des UVP sparen 15%
Über K-means Clustering Algorithm: Implementation and Critical Analysis

Clustering is considered as widely used data mining practices. Clustering is the technique of dividing entire dataset in certain clusters created on the comparable characteristics of the instances. On the foundation of the likeness between the instances of data, grouping or clustering the instances of the large database regardless of its size is considered as significant chunk of data mining. There are plentiful approaches of clustering but this book mainly focuses on improving k-Means clustering algorithm. This method clusters the input dataset in quantified number (k) of groups. This method is verified to be very efficient when while dealing with small data, but for huge data, it fails in time complexity; it takes time more than usual. This work mainly aims comparison of k-means clustering scheme with ranking method to speed up the comprehensive running time for k-Means clustering algorithm. The experimental results clearly confirms that the new technique is more time efficient than the old-style k-Means clustering method.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9786138838197
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 68
  • Veröffentlicht:
  • 12. Juli 2019
  • Abmessungen:
  • 150x5x220 mm.
  • Gewicht:
  • 119 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von K-means Clustering Algorithm: Implementation and Critical Analysis

Clustering is considered as widely used data mining practices. Clustering is the technique of dividing entire dataset in certain clusters created on the comparable characteristics of the instances. On the foundation of the likeness between the instances of data, grouping or clustering the instances of the large database regardless of its size is considered as significant chunk of data mining. There are plentiful approaches of clustering but this book mainly focuses on improving k-Means clustering algorithm. This method clusters the input dataset in quantified number (k) of groups. This method is verified to be very efficient when while dealing with small data, but for huge data, it fails in time complexity; it takes time more than usual. This work mainly aims comparison of k-means clustering scheme with ranking method to speed up the comprehensive running time for k-Means clustering algorithm. The experimental results clearly confirms that the new technique is more time efficient than the old-style k-Means clustering method.

Kund*innenbewertungen von K-means Clustering Algorithm: Implementation and Critical Analysis



Ähnliche Bücher finden
Das Buch K-means Clustering Algorithm: Implementation and Critical Analysis ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.