Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Klassifikatoren des maschinellen Lernens &Klassifikator-Beispiele

Über Klassifikatoren des maschinellen Lernens &Klassifikator-Beispiele

Es gibt eine Reihe von Algorithmen des maschinellen Lernens (ML) zur Klassifizierung von Bodenbedeckung und Bodennutzung. In diesem Buch konzentrieren wir uns auf die relativ ausgereiften Methoden (sieben Methoden) Support-Vector-Maschinen (SVM), Entscheidungsbäume (DTs), künstliche neuronale Netze, k-nearest neighbours (k-NN), naive Bayes, Boosting und Random Forest (RF).Die genaue und zeitnahe Erfassung von Informationen zur Flächennutzung und Bodenbedeckung in Städten ist für viele Aspekte der Stadtentwicklung und des Umweltschutzes von entscheidender Bedeutung.Die genaue Klassifizierung der Bodenbedeckung ist eine Herausforderung. Die Verbesserung der Bodenbedeckungsklassifizierung ist ein aktuelles Thema. Sie wird für viele Anwendungen benötigt, z. B. für die Kartierung der Bodennutzung und -bedeckung, die Umweltüberwachung, die Bewirtschaftung natürlicher Ressourcen, die Stadtplanung und -verwaltung sowie die Erkennung von Veränderungen. Anschließend wurde eine Reihe von Methoden untersucht, um verschiedene Klassifikatoren zu kombinieren.

Mehr anzeigen
  • Sprache:
  • Deutsch
  • ISBN:
  • 9786206998433
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 60
  • Veröffentlicht:
  • 29. Dezember 2023
  • Abmessungen:
  • 150x5x220 mm.
  • Gewicht:
  • 107 g.
  Versandkostenfrei
  Sofort lieferbar

Beschreibung von Klassifikatoren des maschinellen Lernens &Klassifikator-Beispiele

Es gibt eine Reihe von Algorithmen des maschinellen Lernens (ML) zur Klassifizierung von Bodenbedeckung und Bodennutzung. In diesem Buch konzentrieren wir uns auf die relativ ausgereiften Methoden (sieben Methoden) Support-Vector-Maschinen (SVM), Entscheidungsbäume (DTs), künstliche neuronale Netze, k-nearest neighbours (k-NN), naive Bayes, Boosting und Random Forest (RF).Die genaue und zeitnahe Erfassung von Informationen zur Flächennutzung und Bodenbedeckung in Städten ist für viele Aspekte der Stadtentwicklung und des Umweltschutzes von entscheidender Bedeutung.Die genaue Klassifizierung der Bodenbedeckung ist eine Herausforderung. Die Verbesserung der Bodenbedeckungsklassifizierung ist ein aktuelles Thema. Sie wird für viele Anwendungen benötigt, z. B. für die Kartierung der Bodennutzung und -bedeckung, die Umweltüberwachung, die Bewirtschaftung natürlicher Ressourcen, die Stadtplanung und -verwaltung sowie die Erkennung von Veränderungen. Anschließend wurde eine Reihe von Methoden untersucht, um verschiedene Klassifikatoren zu kombinieren.

Kund*innenbewertungen von Klassifikatoren des maschinellen Lernens &Klassifikator-Beispiele



Ähnliche Bücher finden
Das Buch Klassifikatoren des maschinellen Lernens &Klassifikator-Beispiele ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.