Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Künstliche neuronale Netze im Wasserbau

Über Künstliche neuronale Netze im Wasserbau

Prognosen zukünftiger Ereignisse sind für viele der Aktivitäten erforderlich, die mit der Planung und dem Betrieb der Komponenten eines Wasserressourcensystems verbunden sind. Für die hydrologische Komponente werden sowohl kurz- als auch langfristige Vorhersagen hydrologischer Zeitreihen benötigt, um das System zu optimieren oder eine zukünftige Erweiterung oder Reduzierung zu planen. In diesem Beitrag werden verschiedene Techniken künstlicher neuronaler Netze (ANN) für kurzfristige kontinuierliche und intermittierende tägliche Abflussvorhersagen und tägliche Vorhersagen von Schwebstoffen verglichen. Drei verschiedene ANN-Techniken, nämlich Feed Forward Back Propagation (FFBP), Generalized Regression Neural Networks (GRNN) und Radial Basis Function-based Neural Networks (RBF) werden auf die hydrologischen Daten angewendet. Im Allgemeinen wird festgestellt, dass die Vorhersageleistung der ANN-Techniken den anderen konventionellen statistischen und stochastischen Methoden in Bezug auf die ausgewählten Leistungskriterien überlegen ist.

Mehr anzeigen
  • Sprache:
  • Deutsch
  • ISBN:
  • 9786205902769
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 80
  • Veröffentlicht:
  • 15. April 2023
  • Abmessungen:
  • 150x5x220 mm.
  • Gewicht:
  • 137 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Künstliche neuronale Netze im Wasserbau

Prognosen zukünftiger Ereignisse sind für viele der Aktivitäten erforderlich, die mit der Planung und dem Betrieb der Komponenten eines Wasserressourcensystems verbunden sind. Für die hydrologische Komponente werden sowohl kurz- als auch langfristige Vorhersagen hydrologischer Zeitreihen benötigt, um das System zu optimieren oder eine zukünftige Erweiterung oder Reduzierung zu planen. In diesem Beitrag werden verschiedene Techniken künstlicher neuronaler Netze (ANN) für kurzfristige kontinuierliche und intermittierende tägliche Abflussvorhersagen und tägliche Vorhersagen von Schwebstoffen verglichen. Drei verschiedene ANN-Techniken, nämlich Feed Forward Back Propagation (FFBP), Generalized Regression Neural Networks (GRNN) und Radial Basis Function-based Neural Networks (RBF) werden auf die hydrologischen Daten angewendet. Im Allgemeinen wird festgestellt, dass die Vorhersageleistung der ANN-Techniken den anderen konventionellen statistischen und stochastischen Methoden in Bezug auf die ausgewählten Leistungskriterien überlegen ist.

Kund*innenbewertungen von Künstliche neuronale Netze im Wasserbau



Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.