Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Linear Algebra for Data Science

Über Linear Algebra for Data Science

This book serves as an introduction to linear algebra for undergraduate students in data science, statistics, computer science, economics, and engineering. The book presents all the essentials in rigorous (proof-based) manner, describes the intuition behind the results, while discussing some applications to data science along the way. The book comes with two parts, one on vectors, the other on matrices. The former consists of four chapters: vector algebra, linear independence and linear subspaces, orthonormal bases and the Gram-Schmidt process, linear functions. The latter comes with eight chapters: matrices and matrix operations, invertible matrices and matrix inversion, projections and regression, determinants, eigensystems and diagonalizability, symmetric matrices, singular value decomposition, and stochastic matrices. The book ends with the solution of exercises which appear throughout its twelve chapters.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9789811276224
  • Einband:
  • Gebundene Ausgabe
  • Seitenzahl:
  • 258
  • Veröffentlicht:
  • 28. Juni 2023
  • Abmessungen:
  • 157x19x235 mm.
  • Gewicht:
  • 531 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Linear Algebra for Data Science

This book serves as an introduction to linear algebra for undergraduate students in data science, statistics, computer science, economics, and engineering. The book presents all the essentials in rigorous (proof-based) manner, describes the intuition behind the results, while discussing some applications to data science along the way.
The book comes with two parts, one on vectors, the other on matrices. The former consists of four chapters: vector algebra, linear independence and linear subspaces, orthonormal bases and the Gram-Schmidt process, linear functions. The latter comes with eight chapters: matrices and matrix operations, invertible matrices and matrix inversion, projections and regression, determinants, eigensystems and diagonalizability, symmetric matrices, singular value decomposition, and stochastic matrices. The book ends with the solution of exercises which appear throughout its twelve chapters.

Kund*innenbewertungen von Linear Algebra for Data Science



Ähnliche Bücher finden
Das Buch Linear Algebra for Data Science ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.