Über Lógica proposicional
Fuente: Wikipedia. Páginas: 25. Capítulos: Tabla de verdad, Modus tollendo tollens, Gráficos existenciales, Proposición, Cálculo proposicional de Frege, Negación lógica, Condicional material, Conectiva lógica, Disyunción lógica, Tautología, Disyunción exclusiva, Conjunción lógica, Modus ponendo ponens, Bicondicional, Variable proposicional, Obviedad, Modus tollendo ponens, Cláusula, Modus ponendo tollens. Extracto: Una tabla de verdad, o tabla de valores de verdad, es una tabla que despliega el valor de verdad de una proposición compuesta, para cada combinación de valores de verdad que se pueda asignar a sus componentes. Fue desarrollada por Charles Sanders Peirce por los años 1880, pero el formato más popular es el que introdujo Ludwig Wittgenstein en su Tractatus logico-philosophicus, publicado en 1921. Considérese dos variables proposicionales A y B. Cada una puede tomar uno de dos valores de verdad: o V (verdadero), o F (falso). Por lo tanto, los valores de verdad de A y de B pueden combinarse de cuatro maneras distintas: o ambas son verdaderas; o A es verdadera y B falsa, o A es falsa y B verdadera, o ambas son falsas. Esto puede expresarse con una tabla simple: Considérese además a "·" como una operación o función lógica que realiza una función de verdad al tomar los valores de verdad de A y de B, y devolver un único valor de verdad. Entonces, existen 16 funciones distintas posibles, y es fácil construir una tabla que muestre qué devuelve cada función frente a las distintas combinaciones de valores de verdad de A y de B. Las dos primeras columnas de la tabla muestran las cuatro combinaciones posibles de valores de verdad de A y de B. Hay por lo tanto 4 líneas, y las 16 columnas despliegan todos los posibles valores que puede devolver una función "·". De esta forma podemos conocer mecánicamente, mediante algoritmo, los posibles valores de verdad de cualquier conexión lógica interpretada como función, siempre y cuando definamos los valores que devuelva la función. Se hace necesario, pues, definir las funciones que se utilizan en la confección de un sistema lógico. De especial relevancia se consideran las definiciones para el Cálculo de deducción natural y las puertas lógicas en los circuitos electrónicos. Para establecer un Sistema formal se establecen las definiciones de los operadores. Las definiciones se harán en función del fin que se pretenda al construir el sistema q
Mehr anzeigen