Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Methoden Der Potentialtheorie Fur Elliptische Differentialgleichungen Beliebiger Ordnung

Über Methoden Der Potentialtheorie Fur Elliptische Differentialgleichungen Beliebiger Ordnung

Die Theorie des NEWToNschen Potentials von Massenverteilungen im Raum ist eines der ältesten Beispiele einer Verbindung von physikalischer Anschauung und mathematischer Interpretation. Bedeutende Mathematiker vieler Generationen, wie C. F. GAUSS, H. POINCARE, D. lIILEERT, N. WIENER haben daran mitgearbeitet. Die Entwicklung der modernen Potentialtheorie ist auch wesentlich durch die Arbeiten von G. C. EVANS, M. RIEsz, O. FBOSTMAN, M. V. KELDYs, M. BRELoT, H. CARTAN, J. DENY, G. CHOQUET, J. L. DooE, H. BAUER, C. CONSTANTINESCU, V. G. MAz 'JA, B. FUGLEDE und anderen bestimmt worden. Historische Darstellungen wurden z. B. in [K6], [A30], [B40] gegeben. Obwohl einige Teile der Potentialtheorie heute als im wesentlichen abgeschlossen gelten, hat sich die Entwicklung in den letzten Jahren wieder erheblich verstärkt, seit sich viele ihrer leistungsfähigen Begriffe und Methoden durch den zunehmenden Einsatz funktionalanalytischer Methoden auf weite Klassen von Problemen aus der Theorie der partiellen Differentialgleichungen anwenden lassen. Daneben sind in der Analysis auch davon unabhängige Bestrebungen von potentialtheoretischem Charakter zu beobachten.

Mehr anzeigen
  • Sprache:
  • Deutsch
  • ISBN:
  • 9783034855815
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 408
  • Veröffentlicht:
  • 23. August 2014
  • Ausgabe:
  • 11977
  • Abmessungen:
  • 244x170x22 mm.
  • Gewicht:
  • 676 g.
  Versandkostenfrei
  Sofort lieferbar
Verlängerte Rückgabefrist bis 31. Januar 2025

Beschreibung von Methoden Der Potentialtheorie Fur Elliptische Differentialgleichungen Beliebiger Ordnung

Die Theorie des NEWToNschen Potentials von Massenverteilungen im Raum ist eines der ältesten Beispiele einer Verbindung von physikalischer Anschauung und mathematischer Interpretation. Bedeutende Mathematiker vieler Generationen, wie C. F. GAUSS, H. POINCARE, D. lIILEERT, N. WIENER haben daran mitgearbeitet. Die Entwicklung der modernen Potentialtheorie ist auch wesentlich durch die Arbeiten von G. C. EVANS, M. RIEsz, O. FBOSTMAN, M. V. KELDYs, M. BRELoT, H. CARTAN, J. DENY, G. CHOQUET, J. L. DooE, H. BAUER, C. CONSTANTINESCU, V. G. MAz 'JA, B. FUGLEDE und anderen bestimmt worden. Historische Darstellungen wurden z. B. in [K6], [A30], [B40] gegeben. Obwohl einige Teile der Potentialtheorie heute als im wesentlichen abgeschlossen gelten, hat sich die Entwicklung in den letzten Jahren wieder erheblich verstärkt, seit sich viele ihrer leistungsfähigen Begriffe und Methoden durch den zunehmenden Einsatz funktionalanalytischer Methoden auf weite Klassen von Problemen aus der Theorie der partiellen Differentialgleichungen anwenden lassen. Daneben sind in der Analysis auch davon unabhängige Bestrebungen von potentialtheoretischem Charakter zu beobachten.

Kund*innenbewertungen von Methoden Der Potentialtheorie Fur Elliptische Differentialgleichungen Beliebiger Ordnung



Ähnliche Bücher finden
Das Buch Methoden Der Potentialtheorie Fur Elliptische Differentialgleichungen Beliebiger Ordnung ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.