Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Nonlinear Predictive Control Using Wiener Models

Über Nonlinear Predictive Control Using Wiener Models

This book presents computationally efficient MPC solutions. The classical model predictive control (MPC) approach to control dynamical systems described by the Wiener model uses an inverse static block to cancel the influence of process nonlinearity. Unfortunately, the model's structure is limited, and it gives poor control quality in the case of an imperfect model and disturbances. An alternative is to use the computationally demanding MPC scheme with on-line nonlinear optimisation repeated at each sampling instant. A linear approximation of the Wiener model or the predicted trajectory is found on-line. As a result, quadratic optimisation tasks are obtained. Furthermore, parameterisation using Laguerre functions is possible to reduce the number of decision variables. Simulation results for ten benchmark processes show that the discussed MPC algorithms lead to excellent control quality. For a neutralisation reactor and a fuel cell, essential advantages ofneural Wiener models are demonstrated.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783030838171
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 368
  • Veröffentlicht:
  • 23. September 2022
  • Ausgabe:
  • 22001
  • Abmessungen:
  • 155x20x235 mm.
  • Gewicht:
  • 557 g.
  Versandkostenfrei
  Sofort lieferbar

Beschreibung von Nonlinear Predictive Control Using Wiener Models

This book presents computationally efficient MPC solutions. The classical model predictive control (MPC) approach to control dynamical systems described by the Wiener model uses an inverse static block to cancel the influence of process nonlinearity. Unfortunately, the model's structure is limited, and it gives poor control quality in the case of an imperfect model and disturbances. An alternative is to use the computationally demanding MPC scheme with on-line nonlinear optimisation repeated at each sampling instant.
A linear approximation of the Wiener model or the predicted trajectory is found on-line. As a result, quadratic optimisation tasks are obtained. Furthermore, parameterisation using Laguerre functions is possible to reduce the number of decision variables. Simulation results for ten benchmark processes show that the discussed MPC algorithms lead to excellent control quality. For a neutralisation reactor and a fuel cell, essential advantages ofneural Wiener models are demonstrated.

Kund*innenbewertungen von Nonlinear Predictive Control Using Wiener Models



Ähnliche Bücher finden
Das Buch Nonlinear Predictive Control Using Wiener Models ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.