Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Projektive Geometrie und Cayley-Klein Geometrien der Ebene

Über Projektive Geometrie und Cayley-Klein Geometrien der Ebene

In diesem Buch wird am Beispiel der ebenen reellen und komplexen projektiven Geometrie und der davon abgeleiteten Cayley-Klein-Geometrien versucht aufzuzeigen, dass das Mathematisieren eine weit über das Fachspezifische hinausgehende Bedeutung hat - sowohl in erkenntnistheoretischer Hinsicht als auch in Bezug auf Anwendungen. Ersteres wird durch den anschaulich-synthetischen Zugang, der im Laufe der Darstellung durch den analytischen ergänzt wird, belegt und durch philosophische und mathematikhistorische Erörterungen untermauert; letzteres erstreckt sich auch auf wenig bekannte Anwendungen innerhalb der Botanik, Kristallografie, Mechanik und Psychologie. Des weiteren werden bislang kaum bzw. nicht in Buchform dargestellte Themen behandelt wie: Natürliche Geometrie von J. Hjelmslev, Beweis des Parallelenaxioms nach P. Lorenzen (konstruktive euklidische Geometrie), Imaginärtheorie nach L. Locher-Ernst, Wegkurven und Wegflächen, Koordinatisierung der Cayley-Klein-Ebenen. Das Buch ist soweit wie möglich elementar gehalten; nur eine Vertrautheit mit mathematischer Argumentation sowie Grundkenntnisse der euklidischen Geometrie werden vorausgesetzt.

Mehr anzeigen
  • Sprache:
  • Deutsch
  • ISBN:
  • 9783764399016
  • Einband:
  • Gebundene Ausgabe
  • Seitenzahl:
  • 440
  • Veröffentlicht:
  • 13. Mai 2009
  • Abmessungen:
  • 175x30x250 mm.
  • Gewicht:
  • 936 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Projektive Geometrie und Cayley-Klein Geometrien der Ebene

In diesem Buch wird am Beispiel der ebenen reellen und komplexen projektiven Geometrie und der davon abgeleiteten Cayley-Klein-Geometrien versucht aufzuzeigen, dass das Mathematisieren eine weit über das Fachspezifische hinausgehende Bedeutung hat - sowohl in erkenntnistheoretischer Hinsicht als auch in Bezug auf Anwendungen. Ersteres wird durch den anschaulich-synthetischen Zugang, der im Laufe der Darstellung durch den analytischen ergänzt wird, belegt und durch philosophische und mathematikhistorische Erörterungen untermauert; letzteres erstreckt sich auch auf wenig bekannte Anwendungen innerhalb der Botanik, Kristallografie, Mechanik und Psychologie. Des weiteren werden bislang kaum bzw. nicht in Buchform dargestellte Themen behandelt wie: Natürliche Geometrie von J. Hjelmslev, Beweis des Parallelenaxioms nach P. Lorenzen (konstruktive euklidische Geometrie), Imaginärtheorie nach L. Locher-Ernst, Wegkurven und Wegflächen, Koordinatisierung der Cayley-Klein-Ebenen. Das Buch ist soweit wie möglich elementar gehalten; nur eine Vertrautheit mit mathematischer Argumentation sowie Grundkenntnisse der euklidischen Geometrie werden vorausgesetzt.

Kund*innenbewertungen von Projektive Geometrie und Cayley-Klein Geometrien der Ebene



Ähnliche Bücher finden
Das Buch Projektive Geometrie und Cayley-Klein Geometrien der Ebene ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.