Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Real Homotopy of Configuration Spaces

Über Real Homotopy of Configuration Spaces

This volume provides a unified and accessible account of recent developments regarding the real homotopy type of configuration spaces of manifolds. Configuration spaces consist of collections of pairwise distinct points in a given manifold, the study of which is a classical topic in algebraic topology. One of this theory¿s most important questions concerns homotopy invariance: if a manifold can be continuously deformed into another one, then can the configuration spaces of the first manifold be continuously deformed into the configuration spaces of the second? This conjecture remains open for simply connected closed manifolds. Here, it is proved in characteristic zero (i.e. restricted to algebrotopological invariants with real coefficients), using ideas from the theory of operads. A generalization to manifolds with boundary is then considered. Based on the work of Campos, Ducoulombier, Lambrechts, Willwacher, and the author, the book covers a vast array of topics, including rational homotopy theory, compactifications, PA forms, propagators, Kontsevich integrals, and graph complexes, and will be of interest to a wide audience.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783031044274
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 208
  • Veröffentlicht:
  • 12. Juni 2022
  • Ausgabe:
  • 22001
  • Abmessungen:
  • 155x12x235 mm.
  • Gewicht:
  • 324 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Real Homotopy of Configuration Spaces

This volume provides a unified and accessible account of recent developments regarding the real homotopy type of configuration spaces of manifolds. Configuration spaces consist of collections of pairwise distinct points in a given manifold, the study of which is a classical topic in algebraic topology. One of this theory¿s most important questions concerns homotopy invariance: if a manifold can be continuously deformed into another one, then can the configuration spaces of the first manifold be continuously deformed into the configuration spaces of the second? This conjecture remains open for simply connected closed manifolds. Here, it is proved in characteristic zero (i.e. restricted to algebrotopological invariants with real coefficients), using ideas from the theory of operads. A generalization to manifolds with boundary is then considered. Based on the work of Campos, Ducoulombier, Lambrechts, Willwacher, and the author, the book covers a vast array of topics, including rational homotopy theory, compactifications, PA forms, propagators, Kontsevich integrals, and graph complexes, and will be of interest to a wide audience.

Kund*innenbewertungen von Real Homotopy of Configuration Spaces



Ähnliche Bücher finden
Das Buch Real Homotopy of Configuration Spaces ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.