Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Recent Advances in Testing Techniques for AI Hardware Accelerators

Über Recent Advances in Testing Techniques for AI Hardware Accelerators

The rapid growth in big data from mobile, Internet of things (IoT), and edge devices, and the continued demand for higher computing power, have established deep learning as the cornerstone of most artificial intelligence (AI) applications today. Recent years have seen a push towards deep learning implemented on domain-specific AI accelerators that support custom memory hierarchies, variable precision, and optimized matrix multiplication. Commercial AI accelerators have shown superior energy and footprint efficiency compared to GPUs for a variety of inference tasks. In this monograph, roadblocks that need to be understood and analyzed to ensure functional robustness in emerging AI accelerators are discussed. State-of-the-art practices adopted for structural and functional testing of the accelerators are presented, as well as methodologies for assessing the functional criticality of hardware faults in AI accelerators for reducing the test time by targeting the functionally critical faults. This monograph highlights recent research on efforts to improve test and reliability of neuromorphic computing systems built using non-volatile memory (NVM) devices like spin-transfer-torque (STT-MRAM) and resistive RAM (ReRAM) devices. Also are the robustness of silicon-photonic neural networks and the reliability concerns with manufacturing defects and process variations in monolithic 3D (M3D) based near-memory computing systems.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9781638282402
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 150
  • Veröffentlicht:
  • 21. Juni 2023
  • Abmessungen:
  • 156x8x234 mm.
  • Gewicht:
  • 240 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Recent Advances in Testing Techniques for AI Hardware Accelerators

The rapid growth in big data from mobile, Internet of things (IoT), and edge devices, and the continued demand for higher computing power, have established deep learning as the cornerstone of most artificial intelligence (AI) applications today. Recent years have seen a push towards deep learning implemented on domain-specific AI accelerators that support custom memory hierarchies, variable precision, and optimized matrix multiplication. Commercial AI accelerators have shown superior energy and footprint efficiency compared to GPUs for a variety of inference tasks. In this monograph, roadblocks that need to be understood and analyzed to ensure functional robustness in emerging AI accelerators are discussed. State-of-the-art practices adopted for structural and functional testing of the accelerators are presented, as well as methodologies for assessing the functional criticality of hardware faults in AI accelerators for reducing the test time by targeting the functionally critical faults. This monograph highlights recent research on efforts to improve test and reliability of neuromorphic computing systems built using non-volatile memory (NVM) devices like spin-transfer-torque (STT-MRAM) and resistive RAM (ReRAM) devices. Also are the robustness of silicon-photonic neural networks and the reliability concerns with manufacturing defects and process variations in monolithic 3D (M3D) based near-memory computing systems.

Kund*innenbewertungen von Recent Advances in Testing Techniques for AI Hardware Accelerators



Ähnliche Bücher finden
Das Buch Recent Advances in Testing Techniques for AI Hardware Accelerators ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.