Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Statistical Models for Segmentation from MR Localizer Images

Statistical Models for Segmentation from MR Localizer Imagesvon Matthias Fenchel
Über Statistical Models for Segmentation from MR Localizer Images

In dieser Dissertation werden Methoden zur Segmentierung anatomischer Strukturen in Planungsbildern der Magnetresonanztomographie (MRT), sogenannten Localizer-Bildern, vorgestellt. Localizer sind schnelle MR-Scanprotokolle zur Untersuchungsplanung. Segmentierungen anatomischer Strukturen aus diesen Bildern können für Anwendungen zur vollautomatischen Untersuchungsplanung, z.B. Organlokalisierungen, Schichtpositionierungen, Sequenzanpassungen, etc. verwendet werden. Da Localizer-Bilder nicht hinsichtlich Bildqualität sondern hinsichtlich Messzeit und Abdeckung optimiert sind, sind modellbasierte statistische Verfahren für die Segmentierung vorteilhaft. Zwei Methoden werden vorgestellt: Die erste ist eine Methode zur Rekonstruktion von Leberform, -position und -orientierung aus einer Serie von wenigen 2D-Planungsschichtbildern mit großem Schichtabstand. Dazu wird ein Active Shape Model aus manuellen Lebersegmentierungen von 3D Trainingsbildern erstellt, das die durchschnittliche Leberform und die Hauptkomponenten seiner Varianz beschreibt. Korrespondierende Landmarkenpunkte auf der Oberfl äche werden durch Remeshing mit Hilfe konformer Abbildungen in der sphärischen Domäne initialisiert und verfeinert durch Optimierung eines Korrespondenzmaßes, welches auf Minimum Description Length (MDL) basiert und die Kompaktheit des generierten statistischen Modells beschreibt. Die Segmentierung der Leber aus den gestapelten 2D-Schichtbildern erfolgt durch durch die Berechnung derjenigen Modellinstanz des Active Shape Models, welche bestmöglich die Bilddaten beschreibt. Man erreicht dies durch iterative Berechnung optimaler Verschiebungen der Landmarken. Die optimalen Verschiebungen beruhen auf Grauwertprofilen in den Bildern und einer normalisierten lokalen Statistik der Grauwertverteilungen in den Trainingsbildern. Die Instanz des Active Shape Models, die die gefundenen Verschiebungen der Landmarken am besten repräsentiert, wird durch eine Projektion auf den Linearraum des Active Shape Models gefunden. Daraus erhält man eine gültige Modellinstanz, die die Verschiebungen der Landmarken bestmöglich beschreibt.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783869554396
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 130
  • Veröffentlicht:
  • 12. August 2010
  • Abmessungen:
  • 148x7x210 mm.
  • Gewicht:
  • 179 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.
Verlängerte Rückgabefrist bis 31. Januar 2025
  •  

    Keine Lieferung vor Weihnachten möglich.
    Kaufen Sie jetzt und drucken Sie einen Gutschein aus

Beschreibung von Statistical Models for Segmentation from MR Localizer Images

In dieser Dissertation werden Methoden zur Segmentierung anatomischer Strukturen in Planungsbildern
der Magnetresonanztomographie (MRT), sogenannten Localizer-Bildern, vorgestellt.
Localizer sind schnelle MR-Scanprotokolle zur Untersuchungsplanung. Segmentierungen
anatomischer Strukturen aus diesen Bildern können für Anwendungen zur vollautomatischen
Untersuchungsplanung, z.B. Organlokalisierungen, Schichtpositionierungen, Sequenzanpassungen,
etc. verwendet werden. Da Localizer-Bilder nicht hinsichtlich Bildqualität
sondern hinsichtlich Messzeit und Abdeckung optimiert sind, sind modellbasierte statistische
Verfahren für die Segmentierung vorteilhaft.
Zwei Methoden werden vorgestellt: Die erste ist eine Methode zur Rekonstruktion von Leberform,
-position und -orientierung aus einer Serie von wenigen 2D-Planungsschichtbildern
mit großem Schichtabstand. Dazu wird ein Active Shape Model aus manuellen Lebersegmentierungen
von 3D Trainingsbildern erstellt, das die durchschnittliche Leberform und die Hauptkomponenten
seiner Varianz beschreibt. Korrespondierende Landmarkenpunkte auf der Oberfl
äche werden durch Remeshing mit Hilfe konformer Abbildungen in der sphärischen Domäne
initialisiert und verfeinert durch Optimierung eines Korrespondenzmaßes, welches auf Minimum
Description Length (MDL) basiert und die Kompaktheit des generierten statistischen
Modells beschreibt. Die Segmentierung der Leber aus den gestapelten 2D-Schichtbildern erfolgt
durch durch die Berechnung derjenigen Modellinstanz des Active Shape Models, welche
bestmöglich die Bilddaten beschreibt. Man erreicht dies durch iterative Berechnung optimaler
Verschiebungen der Landmarken. Die optimalen Verschiebungen beruhen auf Grauwertprofilen
in den Bildern und einer normalisierten lokalen Statistik der Grauwertverteilungen in den
Trainingsbildern. Die Instanz des Active Shape Models, die die gefundenen Verschiebungen
der Landmarken am besten repräsentiert, wird durch eine Projektion auf den Linearraum des
Active Shape Models gefunden. Daraus erhält man eine gültige Modellinstanz, die die Verschiebungen
der Landmarken bestmöglich beschreibt.

Kund*innenbewertungen von Statistical Models for Segmentation from MR Localizer Images



Ähnliche Bücher finden
Das Buch Statistical Models for Segmentation from MR Localizer Images ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.