Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Tilings of the Plane

Über Tilings of the Plane

The aim of the book is to study symmetries and tesselation, which have long interested artists and mathematicians. Famous examples are the works created by the Arabs in the Alhambra and the paintings of the Dutch painter Maurits Escher. Mathematicians did not take up the subject intensively until the 19th century. In the process, the visualisation of mathematical relationships leads to very appealing images. Three approaches are described in this book. In Part I, it is shown that there are 17 principally different possibilities of tesselation of the plane, the so-called 'plane crystal groups'. Complementary to this, ideas of Harald Heesch are described, who showed how these theoretical results can be put into practice: He gave a catalogue of 28 procedures that one can use creatively oneself ¿ following in the footsteps of Escher, so to speak ¿ to create artistically sophisticated tesselation. In the corresponding investigations forthe complex plane in Part II, movements are replaced by bijective holomorphic mappings. This leads into the theory of groups of Möbius transformations: Kleinian groups, Schottky groups, etc. There are also interesting connections to hyperbolic geometry. Finally, in Part III, a third aspect of the subject is treated, the Penrose tesselation. This concerns results from the seventies, when easily describable and provably non-periodic parquetisations of the plane were given for the first time.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783658388096
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 296
  • Veröffentlicht:
  • 13. November 2022
  • Ausgabe:
  • 22001
  • Abmessungen:
  • 155x17x235 mm.
  • Gewicht:
  • 452 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Tilings of the Plane

The aim of the book is to study symmetries and tesselation, which have long interested artists and mathematicians. Famous examples are the works created by the Arabs in the Alhambra and the paintings of the Dutch painter Maurits Escher. Mathematicians did not take up the subject intensively until the 19th century. In the process, the visualisation of mathematical relationships leads to very appealing images. Three approaches are described in this book.
In Part I, it is shown that there are 17 principally different possibilities of tesselation of the plane, the so-called 'plane crystal groups'. Complementary to this, ideas of Harald Heesch are described, who showed how these theoretical results can be put into practice: He gave a catalogue of 28 procedures that one can use creatively oneself ¿ following in the footsteps of Escher, so to speak ¿ to create artistically sophisticated tesselation.
In the corresponding investigations forthe complex plane in Part II, movements are replaced by bijective holomorphic mappings. This leads into the theory of groups of Möbius transformations: Kleinian groups, Schottky groups, etc. There are also interesting connections to hyperbolic geometry.
Finally, in Part III, a third aspect of the subject is treated, the Penrose tesselation. This concerns results from the seventies, when easily describable and provably non-periodic parquetisations of the plane were given for the first time.

Kund*innenbewertungen von Tilings of the Plane



Ähnliche Bücher finden
Das Buch Tilings of the Plane ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.