Über Topologie und Analysis
"V. i. e. Ell6a. h1w. ng deA p. ltll. k:tU. ehe. n Le. be. M £. e. M. t Mnge. ge. n je. de. n, de. ll au6 I. l. i. eh a. eh;thabe. n w. U. R. , von unell Sede. d. i. e. Sehw-i. e. JL. i. gkede. n . i. n dell AM 6iihJumg deAl. > e. n, WM . i. hn 1. >0 k. tnde. llR. ueh. t diink. te. , ge. hoJL. tg ellke. nne. n; von unell a. nde. lln abell aueh de. n Punk. t deA ElllluehbMe. n, wOMn ma. n dUlleh g£. ueh6iilUll. i. ge. AMtlte. ngung a. Uell Kltii6te. , d. i. e. . i. n un!. > e. JLe. ll GewaU I. >. i. nd , ge. R. a. nge. n ka. nn, ll. i. eWgell ZIL beAUmme. n ILnd wedell Mna. 1L6 zUlliieke. n. " Vell Giillingell Na. tUll6oMehell Ge. Ollg FORSTER (11811 iibell den bll. i. t. tI. lehe. n Entde. eke. ll Ja. meA COOK INHALTLICHE MOTIVATION. Intensivere Nutzung mathematischer Ideen, Methoden und Techniken in den Einzelwissenschaften und zur Losung praktischer Probleme erfordert yom Mathematiker neben groBerer auBermathematischer "Anwendungsbereit schaft" zugleich eine umfassendere innermathematische "Orientiertheit". In der Praxis kommt es haufig nicht so sehr darauf an, aus einer mathematischen Idee be sonders weitrei chende Kon. sequenzen zu zi ehen, sondern ei nen Gegenstands- oder Problembereich moglichst angemessen mit einer Vielfalt mathematischer Theorien versuchsweise zu Uberdecken.
Mehr anzeigen