Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Towards Heterogeneous Multi-Core Systems-On-Chip for Edge Machine Learning

- Journey from Single-Core Acceleration to Multi-Core Heterogeneous Systems

Über Towards Heterogeneous Multi-Core Systems-On-Chip for Edge Machine Learning

This book explores and motivates the need for building homogeneous and heterogeneous multi-core systems for machine learning to enable flexibility and energy-efficiency. Coverage focuses on a key aspect of the challenges of (extreme-)edge-computing, i.e., design of energy-efficient and flexible hardware architectures, and hardware-software co-optimization strategies to enable early design space exploration of hardware architectures. The authors investigate possible design solutions for building single-core specialized hardware accelerators for machine learning and motivates the need for building homogeneous and heterogeneous multi-core systems to enable flexibility and energy-efficiency. The advantages of scaling to heterogeneous multi-core systems are shown through the implementation of multiple test chips and architectural optimizations.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783031382291
  • Einband:
  • Gebundene Ausgabe
  • Seitenzahl:
  • 186
  • Veröffentlicht:
  • 17. September 2023
  • Abmessungen:
  • 156x234x13 mm.
  • Gewicht:
  • 476 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Towards Heterogeneous Multi-Core Systems-On-Chip for Edge Machine Learning

This book explores and motivates the need for building homogeneous and heterogeneous multi-core systems for machine learning to enable flexibility and energy-efficiency. Coverage focuses on a key aspect of the challenges of (extreme-)edge-computing, i.e., design of energy-efficient and flexible hardware architectures, and hardware-software co-optimization strategies to enable early design space exploration of hardware architectures. The authors investigate possible design solutions for building single-core specialized hardware accelerators for machine learning and motivates the need for building homogeneous and heterogeneous multi-core systems to enable flexibility and energy-efficiency. The advantages of scaling to heterogeneous multi-core systems are shown through the implementation of multiple test chips and architectural optimizations.

Kund*innenbewertungen von Towards Heterogeneous Multi-Core Systems-On-Chip for Edge Machine Learning



Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.