Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Una soglia multilivello ottimale per la segmentazione di immagini a colori

Über Una soglia multilivello ottimale per la segmentazione di immagini a colori

La diagnosi accurata del cancro al seno nelle immagini istopatologiche è difficile a causa dell'eterogeneità della crescita delle cellule tumorali e di una varietà di lesioni proliferative benigne del tessuto mammario. In questo lavoro proponiamo una soluzione pratica e autointerpretabile per la diagnosi del cancro invasivo. Con informazioni di annotazione minime, il metodo proposto estrae modelli di contrasto tra immagini normali e maligne in modo non supervisionato e genera una mappa di probabilità delle anomalie per verificare il suo ragionamento. In particolare, un codificatore automatico completamente convoluzionale viene utilizzato per apprendere i modelli strutturali dominanti tra le normali patch di immagine. Le patch che non condividono le caratteristiche di questa popolazione normale vengono rilevate e analizzate da una macchina vettoriale di supporto di una classe e da una rete neurale a 1 strato. Applichiamo il metodo proposto a un set di immagini pubbliche del cancro al seno. I nostri risultati, in consultazione con un patologo esperto, dimostrano che il metodo proposto supera i metodi esistenti. La mappa di probabilità ottenuta potrebbe avvantaggiare la pratica patologica fornendo dati di verifica visualizzati e potenzialmente portare a una migliore comprensione delle soluzioni diagnostiche basate sui dati.

Mehr anzeigen
  • Sprache:
  • Italienisch
  • ISBN:
  • 9786206671244
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 76
  • Veröffentlicht:
  • 14. November 2023
  • Abmessungen:
  • 150x6x220 mm.
  • Gewicht:
  • 131 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Una soglia multilivello ottimale per la segmentazione di immagini a colori

La diagnosi accurata del cancro al seno nelle immagini istopatologiche è difficile a causa dell'eterogeneità della crescita delle cellule tumorali e di una varietà di lesioni proliferative benigne del tessuto mammario. In questo lavoro proponiamo una soluzione pratica e autointerpretabile per la diagnosi del cancro invasivo. Con informazioni di annotazione minime, il metodo proposto estrae modelli di contrasto tra immagini normali e maligne in modo non supervisionato e genera una mappa di probabilità delle anomalie per verificare il suo ragionamento. In particolare, un codificatore automatico completamente convoluzionale viene utilizzato per apprendere i modelli strutturali dominanti tra le normali patch di immagine. Le patch che non condividono le caratteristiche di questa popolazione normale vengono rilevate e analizzate da una macchina vettoriale di supporto di una classe e da una rete neurale a 1 strato. Applichiamo il metodo proposto a un set di immagini pubbliche del cancro al seno. I nostri risultati, in consultazione con un patologo esperto, dimostrano che il metodo proposto supera i metodi esistenti. La mappa di probabilità ottenuta potrebbe avvantaggiare la pratica patologica fornendo dati di verifica visualizzati e potenzialmente portare a una migliore comprensione delle soluzioni diagnostiche basate sui dati.

Kund*innenbewertungen von Una soglia multilivello ottimale per la segmentazione di immagini a colori



Ähnliche Bücher finden
Das Buch Una soglia multilivello ottimale per la segmentazione di immagini a colori ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.