Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Vorlesung über Approximationstheorie

Über Vorlesung über Approximationstheorie

Dieses Manuskript ist die Ausarbeitung einer im Sommersemester 1964 gehaltenen Vorlesung~ deren Ziel es war, die Horer mit den Problemen der Approximationstheorie vertraut zu machen, die die Grundlage des numerischen Arbeitens bilden. Da keine speziellen Vorkenntnisse vorausgesetzt wurden~ mu~ten auch die klassischen Fragen behandelt oder ~enigstens gestreift werden. Den Hauptgegenstand bildete die Theorie der Tschebyscheff-Approximation stetiger Funktionen. Im Gegensatz zu der EinfUhrung von J. Rice (siehe Literatur-Ver­ zeichnis [1964J ) wurden Polynom-Approximation und rationale Approximation gemeinsam behandelt, da man vielraeh die gleiehen qUalitativen Resultate erhalt, wenn man'normal~ Funktionen verwendet. Leider trifft diese Feststellung fUr die Konvergenz des Remes-Algo­ rithmus im Gro5en nicht zu. Obgleieh seit Niedersehri£t der Vorle­ sung weitere Ergebnisse erzielt worden sind, steht eine vollige Klarung der Verhaltnisse noeh aus. Siehere Algorithmen zur Bereehnung der rationalen Tsehebyseheff-Approximierenden sind sebr schwerfallig, andere, die elegant sind, konvergieren nur, wenn die Ansatzfunktion bereits gut genug war. Der als Anhang beigefligte Algorithmus stellt einen, hoffentlieh guten, KompromiS dar. Folgerungen aus Eigensehaften der zu approximierenden Funktion, die fiber die Stetigkeit hinausgehen, konnten aus Zeitmangel kaum berueksichtigt werden. Es kann in dieser Hinsieht auf das Bueh von G. Meinardus [1964J verwiesen werden. Ieh danke Herrn Dipl.-Math. G. Lamprecht fur die Anfertigung der Vorlesungsnachschrift, den Herren Dipl.-Hath. H. Biermann und Dipl.-l-1ath. W. Dost sowie Frau Stud.Assessorin I. Werner fiir die Hilfe bei der Korrektur.

Mehr anzeigen
  • Sprache:
  • Deutsch
  • ISBN:
  • 9783540035978
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 204
  • Veröffentlicht:
  • 1. Januar 1966
  • Abmessungen:
  • 155x12x235 mm.
  • Gewicht:
  • 318 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Vorlesung über Approximationstheorie

Dieses Manuskript ist die Ausarbeitung einer im Sommersemester 1964 gehaltenen Vorlesung~ deren Ziel es war, die Horer mit den Problemen der Approximationstheorie vertraut zu machen, die die Grundlage des numerischen Arbeitens bilden. Da keine speziellen Vorkenntnisse vorausgesetzt wurden~ mu~ten auch die klassischen Fragen behandelt oder ~enigstens gestreift werden. Den Hauptgegenstand bildete die Theorie der Tschebyscheff-Approximation stetiger Funktionen. Im Gegensatz zu der EinfUhrung von J. Rice (siehe Literatur-Ver­ zeichnis [1964J ) wurden Polynom-Approximation und rationale Approximation gemeinsam behandelt, da man vielraeh die gleiehen qUalitativen Resultate erhalt, wenn man'normal~ Funktionen verwendet. Leider trifft diese Feststellung fUr die Konvergenz des Remes-Algo­ rithmus im Gro5en nicht zu. Obgleieh seit Niedersehri£t der Vorle­ sung weitere Ergebnisse erzielt worden sind, steht eine vollige Klarung der Verhaltnisse noeh aus. Siehere Algorithmen zur Bereehnung der rationalen Tsehebyseheff-Approximierenden sind sebr schwerfallig, andere, die elegant sind, konvergieren nur, wenn die Ansatzfunktion bereits gut genug war. Der als Anhang beigefligte Algorithmus stellt einen, hoffentlieh guten, KompromiS dar. Folgerungen aus Eigensehaften der zu approximierenden Funktion, die fiber die Stetigkeit hinausgehen, konnten aus Zeitmangel kaum berueksichtigt werden. Es kann in dieser Hinsieht auf das Bueh von G. Meinardus [1964J verwiesen werden. Ieh danke Herrn Dipl.-Math. G. Lamprecht fur die Anfertigung der Vorlesungsnachschrift, den Herren Dipl.-Hath. H. Biermann und Dipl.-l-1ath. W. Dost sowie Frau Stud.Assessorin I. Werner fiir die Hilfe bei der Korrektur.

Kund*innenbewertungen von Vorlesung über Approximationstheorie



Ähnliche Bücher finden
Das Buch Vorlesung über Approximationstheorie ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.