Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Alternating Direction Method of Multipliers for Machine Learning

Über Alternating Direction Method of Multipliers for Machine Learning

Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9789811698422
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 288
  • Veröffentlicht:
  • 17. Juni 2023
  • Ausgabe:
  • 23001
  • Abmessungen:
  • 155x16x235 mm.
  • Gewicht:
  • 441 g.
  Versandkostenfrei
  Sofort lieferbar

Beschreibung von Alternating Direction Method of Multipliers for Machine Learning

Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.

Kund*innenbewertungen von Alternating Direction Method of Multipliers for Machine Learning



Ähnliche Bücher finden
Das Buch Alternating Direction Method of Multipliers for Machine Learning ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.