Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Artificial Intelligence for Scientific Discoveries

Über Artificial Intelligence for Scientific Discoveries

Will research soon be done by artificial intelligence, thereby making human researchers superfluous? This book explains modern approaches to discovering physical concepts with machine learning and elucidates their strengths and limitations. The automation of the creation of experimental setups and physical models, as well as model testing are discussed. The focus of the book is the automation of an important step of the model creation, namely finding a minimal number of natural parameters that contain sufficient information to make predictions about the considered system. The basic idea of this approach is to employ a deep learning architecture, SciNet, to model a simplified version of a physicist's reasoning process. SciNet finds the relevant physical parameters, like the mass of a particle, from experimental data and makes predictions based on the parameters found. The author demonstrates how to extract conceptual information from such parameters, e.g., Copernicus' conclusion that the solar system is heliocentric.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783031270185
  • Einband:
  • Gebundene Ausgabe
  • Seitenzahl:
  • 188
  • Veröffentlicht:
  • 12. April 2023
  • Ausgabe:
  • 23001
  • Abmessungen:
  • 160x16x241 mm.
  • Gewicht:
  • 453 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.
Verlängerte Rückgabefrist bis 31. Januar 2025

Beschreibung von Artificial Intelligence for Scientific Discoveries

Will research soon be done by artificial intelligence, thereby making human researchers superfluous? This book explains modern approaches to discovering physical concepts with machine learning and elucidates their strengths and limitations. The automation of the creation of experimental setups and physical models, as well as model testing are discussed. The focus of the book is the automation of an important step of the model creation, namely finding a minimal number of natural parameters that contain sufficient information to make predictions about the considered system. The basic idea of this approach is to employ a deep learning architecture, SciNet, to model a simplified version of a physicist's reasoning process. SciNet finds the relevant physical parameters, like the mass of a particle, from experimental data and makes predictions based on the parameters found. The author demonstrates how to extract conceptual information from such parameters, e.g., Copernicus' conclusion that the solar system is heliocentric.

Kund*innenbewertungen von Artificial Intelligence for Scientific Discoveries



Ähnliche Bücher finden
Das Buch Artificial Intelligence for Scientific Discoveries ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.