Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Bayesian Optimization

von Peng Liu
Über Bayesian Optimization

This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learning models and learn sample-efficient approaches to global optimization.The book begins by introducing different Bayesian Optimization (BO) techniques, covering both commonly used tools and advanced topics. It follows a ¿develop from scratch¿ method using Python, and gradually builds up to more advanced libraries such as BoTorch, an open-source project introduced by Facebook recently. Along the way, yoüll see practical implementations of this important discipline along with thorough coverage and straightforward explanations of essential theories. This book intends to bridge the gap between researchers and practitioners, providing both with a comprehensive, easy-to-digest, and useful reference guide. After completingthis book, you will have a firm grasp of Bayesian optimization techniques, which yoüll be able to put into practice in your own machine learning models. What You Will LearnApply Bayesian Optimization to build better machine learning models Understand and research existing and new Bayesian Optimization techniques Leverage high-performance libraries such as BoTorch, which offer you the ability to dig into and edit the inner working Dig into the inner workings of common optimization algorithms used to guide the search process in Bayesian optimization Who This Book Is ForBeginner to intermediate level professionals in machine learning, analytics or other roles relevant in data science.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9781484290620
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 252
  • Veröffentlicht:
  • 24. März 2023
  • Ausgabe:
  • 23001
  • Abmessungen:
  • 178x14x254 mm.
  • Gewicht:
  • 482 g.
  Versandkostenfrei
  Sofort lieferbar

Beschreibung von Bayesian Optimization

This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learning models and learn sample-efficient approaches to global optimization.The book begins by introducing different Bayesian Optimization (BO) techniques, covering both commonly used tools and advanced topics. It follows a ¿develop from scratch¿ method using Python, and gradually builds up to more advanced libraries such as BoTorch, an open-source project introduced by Facebook recently. Along the way, yoüll see practical implementations of this important discipline along with thorough coverage and straightforward explanations of essential theories. This book intends to bridge the gap between researchers and practitioners, providing both with a comprehensive, easy-to-digest, and useful reference guide.
After completingthis book, you will have a firm grasp of Bayesian optimization techniques, which yoüll be able to put into practice in your own machine learning models.
What You Will LearnApply Bayesian Optimization to build better machine learning models
Understand and research existing and new Bayesian Optimization techniques
Leverage high-performance libraries such as BoTorch, which offer you the ability to dig into and edit the inner working
Dig into the inner workings of common optimization algorithms used to guide the search process in Bayesian optimization
Who This Book Is ForBeginner to intermediate level professionals in machine learning, analytics or other roles relevant in data science.

Kund*innenbewertungen von Bayesian Optimization



Ähnliche Bücher finden
Das Buch Bayesian Optimization ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.