Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Computational and Machine Learning Tools for Archaeological Site Modeling

enthalten in Springer Theses-Reihe

Über Computational and Machine Learning Tools for Archaeological Site Modeling

This book describes a novel machine-learning based approach to answer some traditional archaeological problems, relating to archaeological site detection and site locational preferences. Institutional data collected from six Swiss regions (Zurich, Aargau, Grisons, Vaud, Geneva and Fribourg) have been analyzed with an original conceptual framework based on the Random Forest algorithm. It is shown how the algorithm can assist in the modelling process in connection with heterogeneous, incomplete archaeological datasets and related cultural heritage information. Moreover, an in-depth review of past and more recent works of quantitative methods for archaeological predictive modelling is provided. The book guides the readers to set up their own protocol for: i) dealing with uncertain data, ii) predicting archaeological site location, iii) establishing environmental features importance, iv) and suggest a model validation procedure. It addresses both academics and professionals in archaeology and cultural heritage management, and offers a source of inspiration for future research directions in the field of digital humanities and computational archaeology.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783030885694
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 316
  • Veröffentlicht:
  • 26. Januar 2023
  • Ausgabe:
  • 23001
  • Abmessungen:
  • 155x18x235 mm.
  • Gewicht:
  • 482 g.
  Versandkostenfrei
  Sofort lieferbar

Beschreibung von Computational and Machine Learning Tools for Archaeological Site Modeling

This book describes a novel machine-learning based approach to answer some traditional archaeological problems, relating to archaeological site detection and site locational preferences. Institutional data collected from six Swiss regions (Zurich, Aargau, Grisons, Vaud, Geneva and Fribourg) have been analyzed with an original conceptual framework based on the Random Forest algorithm. It is shown how the algorithm can assist in the modelling process in connection with heterogeneous, incomplete archaeological datasets and related cultural heritage information. Moreover, an in-depth review of past and more recent works of quantitative methods for archaeological predictive modelling is provided. The book guides the readers to set up their own protocol for: i) dealing with uncertain data, ii) predicting archaeological site location, iii) establishing environmental features importance, iv) and suggest a model validation procedure. It addresses both academics and professionals in archaeology and cultural heritage management, and offers a source of inspiration for future research directions in the field of digital humanities and computational archaeology.

Kund*innenbewertungen von Computational and Machine Learning Tools for Archaeological Site Modeling



Ähnliche Bücher finden
Das Buch Computational and Machine Learning Tools for Archaeological Site Modeling ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.