Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Data Orchestration in Deep Learning Accelerators

Über Data Orchestration in Deep Learning Accelerators

This Synthesis Lecture focuses on techniques for efficient data orchestration within DNN accelerators. The End of Moore's Law, coupled with the increasing growth in deep learning and other AI applications has led to the emergence of custom Deep Neural Network (DNN) accelerators for energy-efficient inference on edge devices. Modern DNNs have millions of hyper parameters and involve billions of computations; this necessitates extensive data movement from memory to on-chip processing engines. It is well known that the cost of data movement today surpasses the cost of the actual computation; therefore, DNN accelerators require careful orchestration of data across on-chip compute, network, and memory elements to minimize the number of accesses to external DRAM. The book covers DNN dataflows, data reuse, buffer hierarchies, networks-on-chip, and automated design-space exploration. It concludes with data orchestration challenges with compressed and sparse DNNs and future trends. The target audience is students, engineers, and researchers interested in designing high-performance and low-energy accelerators for DNN inference.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783031006395
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 168
  • Veröffentlicht:
  • 18. August 2020
  • Abmessungen:
  • 191x10x235 mm.
  • Gewicht:
  • 327 g.
  Versandkostenfrei
  Sofort lieferbar
Verlängerte Rückgabefrist bis 31. Januar 2025

Beschreibung von Data Orchestration in Deep Learning Accelerators

This Synthesis Lecture focuses on techniques for efficient data orchestration within DNN accelerators. The End of Moore's Law, coupled with the increasing growth in deep learning and other AI applications has led to the emergence of custom Deep Neural Network (DNN) accelerators for energy-efficient inference on edge devices. Modern DNNs have millions of hyper parameters and involve billions of computations; this necessitates extensive data movement from memory to on-chip processing engines. It is well known that the cost of data movement today surpasses the cost of the actual computation; therefore, DNN accelerators require careful orchestration of data across on-chip compute, network, and memory elements to minimize the number of accesses to external DRAM. The book covers DNN dataflows, data reuse, buffer hierarchies, networks-on-chip, and automated design-space exploration. It concludes with data orchestration challenges with compressed and sparse DNNs and future trends. The target audience is students, engineers, and researchers interested in designing high-performance and low-energy accelerators for DNN inference.

Kund*innenbewertungen von Data Orchestration in Deep Learning Accelerators



Ähnliche Bücher finden
Das Buch Data Orchestration in Deep Learning Accelerators ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.