Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Data Privacy in der Praxis

enthalten in Animals-Reihe

Über Data Privacy in der Praxis

Bewährte Praktiken zur Verbesserung von Privacy für Daten aus technischer, organisatorischer und rechtlicher Sicht Das Buch zeigt, wie Sie dafür sorgen, dass die Daten in Ihrem Projekt privat, anonymisiert und sicher sind Auf den europäischen Markt zugeschnitten, behandelt die DSGVO eingehend Umfasst auch Themen wie ChatGPT und Deep Fakes Katharine Jarmul ist eine renommierte Privacy-Spezialistin. Sie arbeitet für Thoughtworks und ist Mitgründerin der PyLadies Die Anforderungen an den Datenschutz sind in Daten- und KI-Projekten heute so hoch wie nie. Die Integration von Privacy in Datensysteme ist jedoch nach wie vor komplex. Dieser Leitfaden vermittelt Data Scientists und Data Engineers ein grundlegendes Verständnis von modernen Datenschutzbausteinen wie Differential Privacy, Federated Learning und homomorpher Verschlüsselung. Privacy-Spezialistin Katharine Jarmul zeigt Best Practices und gibt praxiserprobte Ratschläge für den Einsatz bahnbrechender Technologien zur Verbesserung des Datenschutzes in Produktivsystemen. Das Buch beantwortet diese wichtigen Fragen: Wie wirken sich Datenschutzbestimmungen wie die DSGVO oder der California Consumer Privacy Act (CCPA) auf meine Datenworkflows und Data-Science- Anwendungen aus? Was ist unter »anonymisierten Daten« zu verstehen und wie lassen sich Daten anonymisieren? Wie funktionieren Federated Learning und Federated Analysis? Homomorphe Verschlüsselung klingt großartig - doch ist sie auch anwendungsreif? Wie kann ich datenschutzwahrende Technologien und Verfahren miteinander vergleichen, um die für mich beste Wahl zu treffen? Welche Open-Source-Bibliotheken stehen hierfür zur Verfügung? Wie stelle ich sicher, dass meine Data-Science-Projekte von vornherein geschützt und sicher sind? Wie kann ich mit den für Governance und Informationssicherheit verantwortlichen Teams zusammenarbeiten, um interne Richtlinien in geeigneter Weise umzusetzen?

Mehr anzeigen
  • Sprache:
  • Deutsch
  • ISBN:
  • 9783960092339
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 376
  • Veröffentlicht:
  • 30. Juni 2024
  • Abmessungen:
  • 165x0x240 mm.
  Versandkostenfrei
  Sofort lieferbar
Verlängerte Rückgabefrist bis 31. Januar 2025
  •  

    Keine Lieferung vor Weihnachten möglich.
    Kaufen Sie jetzt und drucken Sie einen Gutschein aus

Beschreibung von Data Privacy in der Praxis

Bewährte Praktiken zur Verbesserung von Privacy für Daten aus technischer, organisatorischer und rechtlicher Sicht

Das Buch zeigt, wie Sie dafür sorgen, dass die Daten in Ihrem Projekt privat, anonymisiert und sicher sind

Auf den europäischen Markt zugeschnitten, behandelt die DSGVO eingehend

Umfasst auch Themen wie ChatGPT und Deep Fakes

Katharine Jarmul ist eine renommierte Privacy-Spezialistin. Sie arbeitet für Thoughtworks und ist Mitgründerin der PyLadies

Die Anforderungen an den Datenschutz sind in Daten- und KI-Projekten heute so hoch wie nie. Die Integration von Privacy in Datensysteme ist jedoch nach wie vor komplex. Dieser Leitfaden vermittelt Data Scientists und Data Engineers ein grundlegendes Verständnis von modernen Datenschutzbausteinen wie Differential Privacy, Federated Learning und homomorpher Verschlüsselung. Privacy-Spezialistin Katharine Jarmul zeigt Best Practices und gibt praxiserprobte Ratschläge für den Einsatz bahnbrechender Technologien zur Verbesserung des Datenschutzes in Produktivsystemen.

Das Buch beantwortet diese wichtigen Fragen:

Wie wirken sich Datenschutzbestimmungen wie die DSGVO oder der California Consumer Privacy Act (CCPA) auf meine Datenworkflows und Data-Science-
Anwendungen aus?

Was ist unter »anonymisierten Daten« zu verstehen und wie lassen sich Daten anonymisieren?

Wie funktionieren Federated Learning und Federated Analysis?

Homomorphe Verschlüsselung klingt großartig - doch ist sie auch anwendungsreif?

Wie kann ich datenschutzwahrende Technologien und Verfahren miteinander vergleichen, um die für mich beste Wahl zu treffen? Welche Open-Source-Bibliotheken stehen hierfür zur Verfügung?

Wie stelle ich sicher, dass meine Data-Science-Projekte von vornherein geschützt und sicher sind?

Wie kann ich mit den für Governance und Informationssicherheit verantwortlichen Teams zusammenarbeiten, um interne Richtlinien in geeigneter Weise umzusetzen?

Kund*innenbewertungen von Data Privacy in der Praxis



Ähnliche Bücher finden
Das Buch Data Privacy in der Praxis ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.