Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Deep Learning Applications, Volume 3

Über Deep Learning Applications, Volume 3

This book presents a compilation of extended version of selected papers from the 19th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2020) and focuses on deep learning networks in applications such as pneumonia detection in chest X-ray images, object detection and classification, RGB and depth image fusion, NLP tasks, dimensionality estimation, time series forecasting, building electric power grid for controllable energy resources, guiding charities in maximizing donations, and robotic control in industrial environments. Novel ways of using convolutional neural networks, recurrent neural network, autoencoder, deep evidential active learning, deep rapid class augmentation techniques, BERT models, multi-task learning networks, model compression and acceleration techniques, and conditional Feature Augmented and Transformed GAN (cFAT-GAN) for the above applications are covered in this book. Readers will find insights to help them realize novel waysof using deep learning architectures and algorithms in real-world applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the industry, and innovative product developers.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9789811633560
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 322
  • Veröffentlicht:
  • 13. November 2021
  • Ausgabe:
  • 12022
  • Abmessungen:
  • 155x235x0 mm.
  • Gewicht:
  • 516 g.
  Versandkostenfrei
  Sofort lieferbar
Verlängerte Rückgabefrist bis 31. Januar 2025

Beschreibung von Deep Learning Applications, Volume 3

This book presents a compilation of extended version of selected papers from the 19th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2020) and focuses on deep learning networks in applications such as pneumonia detection in chest X-ray images, object detection and classification, RGB and depth image fusion, NLP tasks, dimensionality estimation, time series forecasting, building electric power grid for controllable energy resources, guiding charities in maximizing donations, and robotic control in industrial environments. Novel ways of using convolutional neural networks, recurrent neural network, autoencoder, deep evidential active learning, deep rapid class augmentation techniques, BERT models, multi-task learning networks, model compression and acceleration techniques, and conditional Feature Augmented and Transformed GAN (cFAT-GAN) for the above applications are covered in this book. Readers will find insights to help them realize novel waysof using deep learning architectures and algorithms in real-world applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the industry, and innovative product developers.

Kund*innenbewertungen von Deep Learning Applications, Volume 3



Ähnliche Bücher finden
Das Buch Deep Learning Applications, Volume 3 ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.