Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Deep Reinforcement Learning with Guaranteed Performance

- A Lyapunov-Based Approach

Über Deep Reinforcement Learning with Guaranteed Performance

This book discusses methods and algorithms for the near-optimal adaptive control of nonlinear systems, including the corresponding theoretical analysis and simulative examples, and presents two innovative methods for the redundancy resolution of redundant manipulators with consideration of parameter uncertainty and periodic disturbances. It also reports on a series of systematic investigations on a near-optimal adaptive control method based on the Taylor expansion, neural networks, estimator design approaches, and the idea of sliding mode control, focusing on the tracking control problem of nonlinear systems under different scenarios. The book culminates with a presentation of two new redundancy resolution methods; one addresses adaptive kinematic control of redundant manipulators, and the other centers on the effect of periodic input disturbance on redundancy resolution. Each self-contained chapter is clearly written, making the book accessible to graduate students as well as academic and industrial researchers in the fields of adaptive and optimal control, robotics, and dynamic neural networks.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783030333836
  • Einband:
  • Gebundene Ausgabe
  • Seitenzahl:
  • 225
  • Veröffentlicht:
  • 20. November 2019
  • Ausgabe:
  • 12020
  • Abmessungen:
  • 155x235x0 mm.
  • Gewicht:
  • 535 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.
Verlängerte Rückgabefrist bis 31. Januar 2025
  •  

    Keine Lieferung vor Weihnachten möglich.
    Kaufen Sie jetzt und drucken Sie einen Gutschein aus

Beschreibung von Deep Reinforcement Learning with Guaranteed Performance

This book discusses methods and algorithms for the near-optimal adaptive control of nonlinear systems, including the corresponding theoretical analysis and simulative examples, and presents two innovative methods for the redundancy resolution of redundant manipulators with consideration of parameter uncertainty and periodic disturbances.
It also reports on a series of systematic investigations on a near-optimal adaptive control method based on the Taylor expansion, neural networks, estimator design approaches, and the idea of sliding mode control, focusing on the tracking control problem of nonlinear systems under different scenarios. The book culminates with a presentation of two new redundancy resolution methods; one addresses adaptive kinematic control of redundant manipulators, and the other centers on the effect of periodic input disturbance on redundancy resolution.
Each self-contained chapter is clearly written, making the book accessible to graduate students as well as academic and industrial researchers in the fields of adaptive and optimal control, robotics, and dynamic neural networks.

Kund*innenbewertungen von Deep Reinforcement Learning with Guaranteed Performance



Ähnliche Bücher finden
Das Buch Deep Reinforcement Learning with Guaranteed Performance ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.