Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Distributed Machine Learning and Gradient Optimization

Über Distributed Machine Learning and Gradient Optimization

This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol. Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9789811634222
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 184
  • Veröffentlicht:
  • 25. Februar 2023
  • Ausgabe:
  • 23001
  • Abmessungen:
  • 155x11x235 mm.
  • Gewicht:
  • 289 g.
  Versandkostenfrei
  Sofort lieferbar

Beschreibung von Distributed Machine Learning and Gradient Optimization

This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.
Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appealto a broad audience in the field of machine learning, artificial intelligence, big data and database management.

Kund*innenbewertungen von Distributed Machine Learning and Gradient Optimization



Ähnliche Bücher finden
Das Buch Distributed Machine Learning and Gradient Optimization ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.