Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Extreme Gradient Boosting for Data Mining Applications

Extreme Gradient Boosting for Data Mining Applicationsvon Nonita Sharma Sie sparen 14% des UVP sparen 14%
Über Extreme Gradient Boosting for Data Mining Applications

Prediction models have reached to a stage where a single model is not sufficient to make predictions. Hence, to achieve better accuracy and performance, an ensemble of various models are being used. Gradient Boosting Algorithm has almost been the part of all ensembles. Winners of Kaggle Competition are swearing by this. Extreme Gradient Boosting is a step forward to this where we try to optimise the loss function. In this research work Squared Logistic Loss function is used with Boosting function which is expected to reduce bias and variance. The proposed model is applied on stock market data for the past ten years. Squared Logistic Loss function with XGBoost promises to be an effective approach in terms of accuracy and better prediction.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9786138236122
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 64
  • Veröffentlicht:
  • 15. März 2018
  • Abmessungen:
  • 150x4x220 mm.
  • Gewicht:
  • 113 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.
Verlängerte Rückgabefrist bis 31. Januar 2025
  •  

    Keine Lieferung vor Weihnachten möglich.
    Kaufen Sie jetzt und drucken Sie einen Gutschein aus

Beschreibung von Extreme Gradient Boosting for Data Mining Applications

Prediction models have reached to a stage where a single model is not sufficient to make predictions. Hence, to achieve better accuracy and performance, an ensemble of various models are being used. Gradient Boosting Algorithm has almost been the part of all ensembles. Winners of Kaggle Competition are swearing by this. Extreme Gradient Boosting is a step forward to this where we try to optimise the loss function. In this research work Squared Logistic Loss function is used with Boosting function which is expected to reduce bias and variance. The proposed model is applied on stock market data for the past ten years. Squared Logistic Loss function with XGBoost promises to be an effective approach in terms of accuracy and better prediction.

Kund*innenbewertungen von Extreme Gradient Boosting for Data Mining Applications



Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.