Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Introduction to Riemannian Geometry and Geometric Statistics

Über Introduction to Riemannian Geometry and Geometric Statistics

As data is a predominant resource in applications, Riemannian geometry is a natural framework to model and unify complex nonlinear sources of data. However, the development of computational tools from the basic theory of Riemannian geometry is laborious. In this monograph the authors present a self-contained exposition of the basic concepts of Riemannian geometry from a computational viewpoint, providing illustrations and examples at each step. They proceed to demonstrate how these concepts are implemented in the open-source project Geomstats, explaining the choices that were made and the conventions chosen. The reader thus learns in one self-contained volume the theory of Riemann geometry and geometric statistics and their implementation to perform statistics and machine learning on manifolds. Containing many practical Python examples, this monograph is a valuable resource both for mathematicians and applied scientists to learn the theory of Riemann geometry and its use in practice implemented with the Geomstats package where most of the difficulties are hidden under high-level functions.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9781638281542
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 184
  • Veröffentlicht:
  • 22. Februar 2023
  • Abmessungen:
  • 156x11x234 mm.
  • Gewicht:
  • 289 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Introduction to Riemannian Geometry and Geometric Statistics

As data is a predominant resource in applications, Riemannian geometry is a natural framework to model and unify complex nonlinear sources of data. However, the development of computational tools from the basic theory of Riemannian geometry is laborious. In this monograph the authors present a self-contained exposition of the basic concepts of Riemannian geometry from a computational viewpoint, providing illustrations and examples at each step. They proceed to demonstrate how these concepts are implemented in the open-source project Geomstats, explaining the choices that were made and the conventions chosen. The reader thus learns in one self-contained volume the theory of Riemann geometry and geometric statistics and their implementation to perform statistics and machine learning on manifolds. Containing many practical Python examples, this monograph is a valuable resource both for mathematicians and applied scientists to learn the theory of Riemann geometry and its use in practice implemented with the Geomstats package where most of the difficulties are hidden under high-level functions.

Kund*innenbewertungen von Introduction to Riemannian Geometry and Geometric Statistics



Ähnliche Bücher finden
Das Buch Introduction to Riemannian Geometry and Geometric Statistics ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.