Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Machine learning classifiers &Classifier ensample

Machine learning classifiers &Classifier ensamplevon Lamyaa Taha Sie sparen 16% des UVP sparen 16%
Über Machine learning classifiers &Classifier ensample

There are an emergent machine learning(ML) algorithms to classify land-cover and land-use. In this book we focus on the relatively mature methods (seven methods) support vector (SVM) machines, decision trees (DTs), artificial neural networks, k-nearest neighbours (k-NN), naïve Bayes, Boosting and Random forest (RF).Accurate and timely collection of urban land use and land cover information is crucial for many aspects of urban development and environment protection.Accurate land covers classification is challenging. Improving land cover classification is a hot topic. It is needed for many applications such as land use land cover mapping environmental monitoring, natural resource management, urban planning, and management and change detection. Then a number of ensample methods were studied to combine various classifiers.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9786206845867
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 52
  • Veröffentlicht:
  • 30. November 2023
  • Abmessungen:
  • 150x4x220 mm.
  • Gewicht:
  • 96 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Machine learning classifiers &Classifier ensample

There are an emergent machine learning(ML) algorithms to classify land-cover and land-use. In this book we focus on the relatively mature methods (seven methods) support vector (SVM) machines, decision trees (DTs), artificial neural networks, k-nearest neighbours (k-NN), naïve Bayes, Boosting and Random forest (RF).Accurate and timely collection of urban land use and land cover information is crucial for many aspects of urban development and environment protection.Accurate land covers classification is challenging. Improving land cover classification is a hot topic. It is needed for many applications such as land use land cover mapping environmental monitoring, natural resource management, urban planning, and management and change detection. Then a number of ensample methods were studied to combine various classifiers.

Kund*innenbewertungen von Machine learning classifiers &Classifier ensample



Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.