Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Machine Learning Modeling for Spatial-Temporal Prediction of Geohazard

Über Machine Learning Modeling for Spatial-Temporal Prediction of Geohazard

Geohazards, such as landslides, rock avalanches, debris flow, ground fissures, and ground subsidence, pose a significant threat to people's lives and property. Recently, machine learning (ML) has become the predominant approach in geohazard modeling, offering advantages such as an excellent generalization ability and accurately describing complex and nonlinear behaviors. However, the utilization of advanced algorithms in deep learning remains poorly understood in this field. Additionally, there are fundamental challenges associated with ML modeling, including input variable selection, uncertainty quantification, and hyperparameter tuning. This reprint presents original research exploring new advances and challenges in the application of ML in the spatial-temporal modeling of geohazards. The contributions cover the susceptibility analysis of glacier debris flow and landslides, the displacement prediction of reservoir landslides, slope stability prediction and classification, building resilience evaluation, and the prediction of rainfall-induced landslide warning signals.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783036597867
  • Einband:
  • Gebundene Ausgabe
  • Seitenzahl:
  • 274
  • Veröffentlicht:
  • 29. Dezember 2023
  • Abmessungen:
  • 175x22x250 mm.
  • Gewicht:
  • 887 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Machine Learning Modeling for Spatial-Temporal Prediction of Geohazard

Geohazards, such as landslides, rock avalanches, debris flow, ground fissures, and ground subsidence, pose a significant threat to people's lives and property. Recently, machine learning (ML) has become the predominant approach in geohazard modeling, offering advantages such as an excellent generalization ability and accurately describing complex and nonlinear behaviors. However, the utilization of advanced algorithms in deep learning remains poorly understood in this field. Additionally, there are fundamental challenges associated with ML modeling, including input variable selection, uncertainty quantification, and hyperparameter tuning. This reprint presents original research exploring new advances and challenges in the application of ML in the spatial-temporal modeling of geohazards. The contributions cover the susceptibility analysis of glacier debris flow and landslides, the displacement prediction of reservoir landslides, slope stability prediction and classification, building resilience evaluation, and the prediction of rainfall-induced landslide warning signals.

Kund*innenbewertungen von Machine Learning Modeling for Spatial-Temporal Prediction of Geohazard



Ähnliche Bücher finden
Das Buch Machine Learning Modeling for Spatial-Temporal Prediction of Geohazard ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.