Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Multi-aspect Learning

Über Multi-aspect Learning

This book offers a detailed and comprehensive analysis of multi-aspect data learning, focusing especially on representation learning approaches for unsupervised machine learning. It covers state-of-the-art representation learning techniques for clustering and their applications in various domains. This is the first book to systematically review multi-aspect data learning, incorporating a range of concepts and applications. Additionally, it is the first to comprehensively investigate manifold learning for dimensionality reduction in multi-view data learning. The book presents the latest advances in matrix factorization, subspace clustering, spectral clustering and deep learning methods, with a particular emphasis on the challenges and characteristics of multi-aspect data. Each chapter includes a thorough discussion of state-of-the-art of multi-aspect data learning methods and important research gaps. The book provides readers with the necessary foundational knowledge to apply these methods to new domains and applications, as well as inspire new research in this emerging field.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783031335594
  • Einband:
  • Gebundene Ausgabe
  • Seitenzahl:
  • 192
  • Veröffentlicht:
  • 28. Juli 2023
  • Ausgabe:
  • 23001
  • Abmessungen:
  • 160x16x241 mm.
  • Gewicht:
  • 494 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Multi-aspect Learning

This book offers a detailed and comprehensive analysis of multi-aspect data learning, focusing especially on representation learning approaches for unsupervised machine learning. It covers state-of-the-art representation learning techniques for clustering and their applications in various domains. This is the first book to systematically review multi-aspect data learning, incorporating a range of concepts and applications. Additionally, it is the first to comprehensively investigate manifold learning for dimensionality reduction in multi-view data learning. The book presents the latest advances in matrix factorization, subspace clustering, spectral clustering and deep learning methods, with a particular emphasis on the challenges and characteristics of multi-aspect data. Each chapter includes a thorough discussion of state-of-the-art of multi-aspect data learning methods and important research gaps. The book provides readers with the necessary foundational knowledge to apply these methods to new domains and applications, as well as inspire new research in this emerging field.

Kund*innenbewertungen von Multi-aspect Learning



Ähnliche Bücher finden
Das Buch Multi-aspect Learning ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.