Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Near-Optimal Data-Driven l1-Regularization

Near-Optimal Data-Driven l1-Regularizationvon Judith Wewerka
Über Near-Optimal Data-Driven l1-Regularization

l1-Regularisierung ist ein allgemein bekannter Ansatz um unterbestimmte Gleichungssysteme zu lösen. Der Anteil der Regularisierung wird von einem Regularisierungsparameter kontrolliert. Obwohl es bereits zahlreiche Techniken gibt, diesen Parameter zu wählen, ist die korrekte Wahl nach wie vor eine Herausforderung. In dieser Arbeit schlagen wir einen datengestützten Ansatz vor, der nicht auf Wissen über den Rauschpegel beruht. Die Idee ist den Regularisierungsparameter von LASSO durch eine greedy Lösung, die von OMP berechnet wurde, zu schätzen. Folglich können wir die Vorteile eines greedy Ansatzes, die aus seiner einfachen Implementierbarkeit und seiner rechnerischen Geschwindigkeit bestehen, ausnutzen. Außerdem vermeiden wir bestimmte Nachteile, zum Beispiel, dass inkorrekte Entscheidungen getroffen werden. Zusätzlich profitieren wir von den positiven Aspekten der LASSO, welche dünnbesetzte Lösungen erzeugt. Wir geben konkrete Fehlerabschätzungen für die, von den verschiedenen Algorithmen rekonstruierten, Vektoren an und zeigen theoretisch, dass durch eine optimale Wahl des Regularisierungsparameters LASSO und OMP den gleichen Fehler erzielen können.

Mehr anzeigen
  • Sprache:
  • Deutsch
  • ISBN:
  • 9786202216876
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 112
  • Veröffentlicht:
  • 14. November 2018
  • Abmessungen:
  • 150x7x220 mm.
  • Gewicht:
  • 185 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Near-Optimal Data-Driven l1-Regularization

l1-Regularisierung ist ein allgemein bekannter Ansatz um unterbestimmte Gleichungssysteme zu lösen. Der Anteil der Regularisierung wird von einem Regularisierungsparameter kontrolliert. Obwohl es bereits zahlreiche Techniken gibt, diesen Parameter zu wählen, ist die korrekte Wahl nach wie vor eine Herausforderung. In dieser Arbeit schlagen wir einen datengestützten Ansatz vor, der nicht auf Wissen über den Rauschpegel beruht. Die Idee ist den Regularisierungsparameter von LASSO durch eine greedy Lösung, die von OMP berechnet wurde, zu schätzen. Folglich können wir die Vorteile eines greedy Ansatzes, die aus seiner einfachen Implementierbarkeit und seiner rechnerischen Geschwindigkeit bestehen, ausnutzen. Außerdem vermeiden wir bestimmte Nachteile, zum Beispiel, dass inkorrekte Entscheidungen getroffen werden. Zusätzlich profitieren wir von den positiven Aspekten der LASSO, welche dünnbesetzte Lösungen erzeugt. Wir geben konkrete Fehlerabschätzungen für die, von den verschiedenen Algorithmen rekonstruierten, Vektoren an und zeigen theoretisch, dass durch eine optimale Wahl des Regularisierungsparameters LASSO und OMP den gleichen Fehler erzielen können.

Kund*innenbewertungen von Near-Optimal Data-Driven l1-Regularization



Ähnliche Bücher finden
Das Buch Near-Optimal Data-Driven l1-Regularization ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.