Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Neuronale Netze und Deep Learning kapieren

Über Neuronale Netze und Deep Learning kapieren

Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-Algorithmen Anschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPy Keine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlich Deep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht. Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz. Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen. Aus dem Inhalt: Parametrische und nichtparametrische Modelle Überwachtes und unüberwachtes Lernen Vorhersagen mit mehreren Ein- und Ausgaben Fehler messen und verringern Hot und Cold Learning Batch- und stochastischer Gradientenabstieg Überanpassung vermeiden Generalisierung Dropout-Verfahren Backpropagation und Forward Propagation Bilderkennung Verarbeitung natürlicher Sprache (NLP) Sprachmodellierung Aktivierungsfunktionen Sigmoid-Funktion Tangens hyperbolicus Softmax Convolutional Neural Networks (CNNs) Recurrent Neural Networks (RNNs) Long Short-Term Memory (LSTM) Deep-Learning-Framework erstellen

Mehr anzeigen
  • Sprache:
  • Deutsch
  • ISBN:
  • 9783747500156
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 354
  • Veröffentlicht:
  • 1. Dezember 2019
  • Abmessungen:
  • 172x23x242 mm.
  • Gewicht:
  • 610 g.
  Versandkostenfrei
  Sofort lieferbar

Beschreibung von Neuronale Netze und Deep Learning kapieren

Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-Algorithmen
Anschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPy
Keine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlich
Deep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht.
Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz.
Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.
Aus dem Inhalt:
Parametrische und nichtparametrische Modelle
Überwachtes und unüberwachtes Lernen
Vorhersagen mit mehreren Ein- und Ausgaben
Fehler messen und verringern
Hot und Cold Learning
Batch- und stochastischer Gradientenabstieg
Überanpassung vermeiden
Generalisierung
Dropout-Verfahren
Backpropagation und Forward Propagation
Bilderkennung
Verarbeitung natürlicher Sprache (NLP)
Sprachmodellierung
Aktivierungsfunktionen
Sigmoid-Funktion
Tangens hyperbolicus
Softmax
Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory (LSTM)
Deep-Learning-Framework erstellen

Kund*innenbewertungen von Neuronale Netze und Deep Learning kapieren



Ähnliche Bücher finden
Das Buch Neuronale Netze und Deep Learning kapieren ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.