Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Self-Adaptive Heuristics for Evolutionary Computation

Über Self-Adaptive Heuristics for Evolutionary Computation

Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves. This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9783540692805
  • Einband:
  • Gebundene Ausgabe
  • Seitenzahl:
  • 196
  • Veröffentlicht:
  • 19. August 2008
  • Abmessungen:
  • 160x16x241 mm.
  • Gewicht:
  • 465 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Self-Adaptive Heuristics for Evolutionary Computation

Evolutionary algorithms are successful biologically inspired meta-heuristics. Their success depends on adequate parameter settings. The question arises: how can evolutionary algorithms learn parameters automatically during the optimization? Evolution strategies gave an answer decades ago: self-adaptation. Their self-adaptive mutation control turned out to be exceptionally successful. But nevertheless self-adaptation has not achieved the attention it deserves.
This book introduces various types of self-adaptive parameters for evolutionary computation. Biased mutation for evolution strategies is useful for constrained search spaces. Self-adaptive inversion mutation accelerates the search on combinatorial TSP-like problems. After the analysis of self-adaptive crossover operators the book concentrates on premature convergence of self-adaptive mutation control at the constraint boundary. Besides extensive experiments, statistical tests and some theoretical investigations enrich the analysis of the proposed concepts.

Kund*innenbewertungen von Self-Adaptive Heuristics for Evolutionary Computation



Ähnliche Bücher finden
Das Buch Self-Adaptive Heuristics for Evolutionary Computation ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.