Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Sicurezza informatica dei Big Data con l'apprendimento automatico

Sicurezza informatica dei Big Data con l'apprendimento automaticovon Kandru Arun Kumar Sie sparen 16% des UVP sparen 16%
Über Sicurezza informatica dei Big Data con l'apprendimento automatico

La sicurezza informatica nel contesto dei big data è nota per essere un problema critico e rappresenta una grande sfida per la comunità di ricerca. Gli algoritmi di apprendimento automatico sono stati proposti come candidati per gestire i problemi di sicurezza dei big data. Tra questi algoritmi, le macchine a vettori di supporto (SVM) hanno ottenuto un notevole successo su vari problemi di classificazione. Tuttavia, per stabilire un SVM efficace, l'utente deve negare in anticipo la corretta configurazione dell'SVM, un compito impegnativo che richiede conoscenze specialistiche e una grande quantità di sforzi manuali per tentativi ed errori. Qui formuliamo il processo di configurazione dell'SVM come un problema di ottimizzazione bi-obiettivo in cui l'accuratezza e la complessità del modello sono considerati due obiettivi in conflitto. Proponiamo un nuovo framework iper-euristico per l'ottimizzazione bi-obiettivo che è indipendente dal dominio del problema. È la prima volta che viene sviluppato un iper-euristico per questo problema. La struttura iper-euristica proposta consiste in una strategia di alto livello e in un'euristica di basso livello.

Mehr anzeigen
  • Sprache:
  • Italienisch
  • ISBN:
  • 9786206503453
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 64
  • Veröffentlicht:
  • 28. September 2023
  • Abmessungen:
  • 150x4x220 mm.
  • Gewicht:
  • 113 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Sicurezza informatica dei Big Data con l'apprendimento automatico

La sicurezza informatica nel contesto dei big data è nota per essere un problema critico e rappresenta una grande sfida per la comunità di ricerca. Gli algoritmi di apprendimento automatico sono stati proposti come candidati per gestire i problemi di sicurezza dei big data. Tra questi algoritmi, le macchine a vettori di supporto (SVM) hanno ottenuto un notevole successo su vari problemi di classificazione. Tuttavia, per stabilire un SVM efficace, l'utente deve negare in anticipo la corretta configurazione dell'SVM, un compito impegnativo che richiede conoscenze specialistiche e una grande quantità di sforzi manuali per tentativi ed errori. Qui formuliamo il processo di configurazione dell'SVM come un problema di ottimizzazione bi-obiettivo in cui l'accuratezza e la complessità del modello sono considerati due obiettivi in conflitto. Proponiamo un nuovo framework iper-euristico per l'ottimizzazione bi-obiettivo che è indipendente dal dominio del problema. È la prima volta che viene sviluppato un iper-euristico per questo problema. La struttura iper-euristica proposta consiste in una strategia di alto livello e in un'euristica di basso livello.

Kund*innenbewertungen von Sicurezza informatica dei Big Data con l'apprendimento automatico



Ähnliche Bücher finden
Das Buch Sicurezza informatica dei Big Data con l'apprendimento automatico ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.