Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Statistische Informationstechnik

Über Statistische Informationstechnik

Die 5. Auflage des Klassikers zur Statistischen Informationstechnik erfährt eine substantielle Erweiterung im Bereich des maschinellen Lernens. Sie bietet somit einen ausgezeichneten Überblick über die beiden wichtigen Themen Mustererkennung/Signalverarbeitung und Maschinelles Lernen. Die Autoren behandeln die Signalerkennung im Rauschen und die Mustererkennung sowie die Parameter- und Signalschätzung. Moderne Verfahren wie Wavelet-Transformation oder Clusterbildung mit unscharfen Partitionen werden berücksichtigt. Neben klassischen Verfahren der Detektion werden neuere, z.B. auf neuronale Netze und kernelbasierten Methoden aufbauende Klassifikatoren diskutiert. Die Parameterschätzung behandelt neben Bayes- und Maximum-Likelihood-Ansätzen auch adaptive Verfahren. Wiener- und Kalman-Filter sind Beispiele zur Signalschätzung. Die Grundlagen werden durch Anwendungsbeispiele aus der Praxis erläutert. Geeignet für Studierende und für Ingenieure in der Praxis.

Mehr anzeigen
  • Sprache:
  • Deutsch
  • ISBN:
  • 9783642159534
  • Einband:
  • Gebundene Ausgabe
  • Seitenzahl:
  • 372
  • Veröffentlicht:
  • 2. Februar 2011
  • Ausgabe:
  • 52011
  • Abmessungen:
  • 155x235x22 mm.
  • Gewicht:
  • 740 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.
Verlängerte Rückgabefrist bis 31. Januar 2025

Beschreibung von Statistische Informationstechnik

Die 5. Auflage des Klassikers zur Statistischen Informationstechnik erfährt eine substantielle Erweiterung im Bereich des maschinellen Lernens. Sie bietet somit einen ausgezeichneten Überblick über die beiden wichtigen Themen Mustererkennung/Signalverarbeitung und Maschinelles Lernen.
Die Autoren behandeln die Signalerkennung im Rauschen und die Mustererkennung sowie die Parameter- und Signalschätzung. Moderne Verfahren wie Wavelet-Transformation oder Clusterbildung mit unscharfen Partitionen werden berücksichtigt. Neben klassischen Verfahren der Detektion werden neuere, z.B. auf neuronale Netze und kernelbasierten Methoden aufbauende Klassifikatoren diskutiert.
Die Parameterschätzung behandelt neben Bayes- und Maximum-Likelihood-Ansätzen auch adaptive Verfahren. Wiener- und Kalman-Filter sind Beispiele zur Signalschätzung. Die Grundlagen werden durch Anwendungsbeispiele aus der Praxis erläutert.
Geeignet für Studierende und für Ingenieure in der Praxis.

Kund*innenbewertungen von Statistische Informationstechnik



Ähnliche Bücher finden
Das Buch Statistische Informationstechnik ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.