Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Study of Advanced ML & DL Models for Credit Card Fraud Detection

Study of Advanced ML & DL Models for Credit Card Fraud Detectionvon Khondekar Lutful Hassan Sie sparen 19% des UVP sparen 19%
Über Study of Advanced ML & DL Models for Credit Card Fraud Detection

Machine learning and deep learning (DL) techniques have shown promising results in detecting fraudulent activities. In this thesis, we propose approaches for credit card fraud detection that combine supervised and unsupervised learning techniques. We apply feature engineering techniques to extract relevant features from the credit card transaction dataset, followed by anomaly detection models that combine supervised ML, semi-supervised ML, and DL techniques. We analyze the dataset using various parameters and methods. Our study on various ML and DL methods in detecting fraudulent transactions are Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Support Vector Classifier (SVC) with Autoencoder, Linear Regression with Autoencoder, K-Nearest Neighbors (KNN), XGBoost, CatBoost, Adaboost, Gradient Boosting, Random Forest, Decision Tree, K-Means Clustering, LightBGM, Logistic Regression, logistic regression with undersampled data, Naive Bayes achieves, SVC achieves, Isolation Forest, and Local Outlier Factor. We evaluate our approach on a real-world credit card transaction dataset named Creditcard.csv from the Kaggle dataset.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9786206180661
  • Einband:
  • Taschenbuch
  • Seitenzahl:
  • 180
  • Veröffentlicht:
  • 5. Juli 2023
  • Abmessungen:
  • 150x11x220 mm.
  • Gewicht:
  • 286 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Study of Advanced ML & DL Models for Credit Card Fraud Detection

Machine learning and deep learning (DL) techniques have shown promising results in detecting fraudulent activities. In this thesis, we propose approaches for credit card fraud detection that combine supervised and unsupervised learning techniques. We apply feature engineering techniques to extract relevant features from the credit card transaction dataset, followed by anomaly detection models that combine supervised ML, semi-supervised ML, and DL techniques. We analyze the dataset using various parameters and methods. Our study on various ML and DL methods in detecting fraudulent transactions are Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Support Vector Classifier (SVC) with Autoencoder, Linear Regression with Autoencoder, K-Nearest Neighbors (KNN), XGBoost, CatBoost, Adaboost, Gradient Boosting, Random Forest, Decision Tree, K-Means Clustering, LightBGM, Logistic Regression, logistic regression with undersampled data, Naive Bayes achieves, SVC achieves, Isolation Forest, and Local Outlier Factor. We evaluate our approach on a real-world credit card transaction dataset named Creditcard.csv from the Kaggle dataset.

Kund*innenbewertungen von Study of Advanced ML & DL Models for Credit Card Fraud Detection



Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.