Große Auswahl an günstigen Büchern
Schnelle Lieferung per Post und DHL

Time Series Analysis and Forecasting using Python & R

Über Time Series Analysis and Forecasting using Python & R

This book full-color textbook assumes a basic understanding of statistics and mathematical or statistical modeling. Although a little programming experience would be nice, but it is not required. We use current real-world data, like COVID-19, to motivate times series analysis have three thread problems that appear in nearly every chapter: "Got Milk?", "Got a Job?" and "Where's the Beef?" Chapter 1: Loading data in the R-Studio and Jupyter Notebook environments. Chapter 2: Components of a times series and decomposition Chapter 3: Moving averages (MAs) and COVID-19 Chapter 4: Simple exponential smoothing (SES), Holt's and Holt-Winter's double and triple exponential smoothing Chapter 5: Python programming in Jupyter Notebook for the concepts covered in Chapters 2, 3 and 4 Chapter 6: Stationarity and differencing, including unit root tests. Chapter 7: ARIMA and SARMIA (seasonal) modeling and forecast development Chapter 8: ARIMA modeling using Python Chapter 9: Structural models and analysis using unobserved component models (UCMs) Chapter 10: Advanced time series analysis, including time-series interventions, exogenous regressors, and vector autoregressive (VAR) processes.

Mehr anzeigen
  • Sprache:
  • Englisch
  • ISBN:
  • 9781716451133
  • Einband:
  • Gebundene Ausgabe
  • Seitenzahl:
  • 448
  • Veröffentlicht:
  • 28. November 2020
  • Abmessungen:
  • 157x29x235 mm.
  • Gewicht:
  • 797 g.
  Versandkostenfrei
  Versandfertig in 1-2 Wochen.

Beschreibung von Time Series Analysis and Forecasting using Python & R

This book full-color textbook assumes a basic understanding of statistics and mathematical or statistical modeling. Although a little programming experience would be nice, but it is not required. We use current real-world data, like COVID-19, to motivate times series analysis have three thread problems that appear in nearly every chapter: "Got Milk?", "Got a Job?" and "Where's the Beef?"

Chapter 1: Loading data in the R-Studio and Jupyter Notebook environments.

Chapter 2: Components of a times series and decomposition

Chapter 3: Moving averages (MAs) and COVID-19
Chapter 4: Simple exponential smoothing (SES), Holt's and Holt-Winter's double and triple exponential smoothing
Chapter 5: Python programming in Jupyter Notebook for the concepts covered in Chapters 2, 3 and 4
Chapter 6: Stationarity and differencing, including unit root tests.

Chapter 7: ARIMA and SARMIA (seasonal) modeling and forecast development
Chapter 8: ARIMA modeling using Python

Chapter 9: Structural models and analysis using unobserved component models (UCMs)
Chapter 10: Advanced time series analysis, including time-series interventions, exogenous regressors, and vector autoregressive (VAR) processes.

Kund*innenbewertungen von Time Series Analysis and Forecasting using Python & R



Ähnliche Bücher finden
Das Buch Time Series Analysis and Forecasting using Python & R ist in den folgenden Kategorien erhältlich:

Willkommen bei den Tales Buchfreunden und -freundinnen

Jetzt zum Newsletter anmelden und tolle Angebote und Anregungen für Ihre nächste Lektüre erhalten.